Algebraic and Geometric Methods in Engineering and Physics

Homework 7

Due on November 13

1. Show that the following choices of unitary matrices determine representations of the group $D_4 \equiv \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$, and compute their characters:

.

(a)
$$\varphi_r^{(1)} = \varphi_s^{(1)} = 1;$$

(b) $\varphi_r^{(2)} = 1, \ \varphi_s^{(2)} = -1;$
(c) $\varphi_r^{(3)} = -1, \ \varphi_s^{(3)} = 1;$
(d) $\varphi_r^{(4)} = \varphi_s^{(4)} = -1;$
(e) $\varphi_r^{(5)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \varphi_s^{(5)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$
(f) $\psi_r = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \psi_s = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

- 2. Using the characters computed in the previous question, show that:
 - (a) $\varphi^{(1)}$, $\varphi^{(2)}$, $\varphi^{(3)}$, $\varphi^{(4)}$ and $\varphi^{(5)}$ are irreducible; (b) $\psi \sim \varphi^{(1)} \oplus \varphi^{(3)} \oplus \varphi^{(5)}$.