Algebraic and Geometric Methods in Engineering and Physics

Homework 4

Due on October 9

- 1. Consider the action of $D_4 = \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$ on $R(4) = \{1, -1, i, -i\}$.
 - (a) Determine whether this action is effective, transitive or free.
 - (b) Find the isotropy group of i.
- 2. Consider the action $SO(3) \stackrel{\varphi}{\frown} S^2$ defined by $\varphi_A(x) = Ax$, where S^2 is the set of unit vectors in \mathbb{R}^3 .
 - (a) Show that

$$SO(3)_{(1,0,0)} = \left\{ \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$$

(b) Write the left coset $[A_{\alpha}]$ explicitly, where

$$A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

(c) Check explicitly that $T([A_{\alpha}])$ does not depend on the choice of representative of $[A_{\alpha}]$, where $T: SO(3)/SO(3)_{(1,0,0)} \rightarrow S^2$ is the natural equivalence between $SO(3) \stackrel{\varphi}{\sim} S^2$ and the canonical action $SO(3) \stackrel{\varphi^{\text{can}}}{\sim} SO(3)/SO(3)_{(1,0,0)}$.