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1 Introduction

As the topic intersects a multitude of fields we deem wise
to present the reader some useful concepts that will help cla-
rify the connection between the Hopf Fibration and Spinors.
We start with some definitions and then proceed to the sub-
ject itself, ending with a simple case of a Spinor system, the
spin − 1/2 system. Other important concepts necessary to
understand this paper, such as the concepts of manifold and
vector bundle, are referenced for the less experienced reader.
(See [4] for instance)

Definition 1 A fiber bundle is a tuple (E ,B, F, p), where E ,B
F are topological spaces and p : E → B is a map with the fol-
lowing properties:

1. For every point z ∈ B ∃ U , an open set of B whose
pre-image p−1(U) is homeomorphic to U × F

2. The homeomorphism ψ : U × F → p−1(U) makes the
following diagram commute:

Figure 1: Fiber Bundle Diagram

Definition 2 In a fiber bundle as above, E is a fiber space,
B is the base space, F is the fiber, and p is the projection.

2 Hopf Fibration

This structure appears as one of the first and most influential
examples of a non-trivial fiber bundle, despite being locally
indistinguishable from the product of S2 × S1. It is part of a
family of four fiber bundles

S0 ↪→ S1 → S1

S1 ↪→ S3 → S2

S3 ↪→ S7 → S4

S7 ↪→ S15 → S8

and it is known that such fibrations can only occur in these
dimensions (Adam’s Theorem, see [1]).

The Hopf Fibration defines a map p : S3 −→ S2 with fibers
S1. One way to see S1 as a fiber of S3 is to consider the action

of S1 on S3, which is a proper and free action so that S3/S1

is a smooth manifold and π : S3 −→ S3/S1 is a submersion.
It is possible to show that there is a diffeomorphism between
S3/S1 and S2, thus inducing the Hopf map, p. Our goal here
is not to prove what is claimed above but to highlight the
connection between the Hopf Fibration and its applications
in Physics, particularly in Spinors. With this in mind, we now
present some known properties of the Hopf Fibration. Firstly,
consider the following definition:

Definition 3 The equivalence relation ∼ on the set C2 is
defined by (z1, z2) ∼ (w1, w2) if ∃c ∈ C \ {0} such that
(z1, z2) = c · (w1, w2).

Now note that:

S3 = {x, y, z, t ∈ R| x2 + y2 + z2 + t2 = 1} ⇔
S3 = {(z1, z2) ∈ C2| z1z̄1 + z2z̄2 = 1}

The more attentive reader can find this interesting since,
when applying the equivalence relation to S3, one is simply
describing the action of S1 on S3, i.e.:

Proposition 1 The equivalence classes defined by the rela-
tionship above are generated by the orbit of the action of S1

on points of S3, with the difference that now that the factor
relating to elements of the same class, λ, follows the condition
imposed by the definition of S3:

For any (w1, w2) , (z1, z2) such that ∃λ ∈ C s.t. (w1, w2) =
λ · (z1, z2) then

1 = w1w̄1 + w2w̄2 = λλ̄(z1z̄1 + z2z̄2) = λλ̄

Thus implying that |λ| = 1.

Defining the Hopf map p : S3 −→ S2 by p(z1, z2) =
(2z1z̄2, |z1|2 − |z2|2), the pre-image of p(z1, z2) is then the
set of points obtained from (z1, z2) by multiplying each co-
ordinate by eiθ, where − π < θ ≤ π. From this, the drawn
conclusion is that each point in S2 is a great circle in S3.
Therefore, ∀s ∈ S2, p−1(s) is homeomorphic to S1. This
justifies the definition of the action of S1 in S3.

Consider CP1 (the complex projective plane) the set of equi-
valence classes of C2\{0}, with the equivalence classes defined
by means of homogeneous coordinates [z1 : z2]. We then have
the correspondence CP1 = {[z : 1]| z ∈ C} ∪ [1 : 0], from
which it can be shown that CP1 is homeomorphic to C ∪∞
(See [3] for more details).

With the above construction, the Hopf map can now be re-
defined as the following p : S3 −→ CP1 where p : (z1, z2) =
[z1 : z2], since CP1 is homeomorphic to S2. From this we
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get the map f induced by p, f : S3 −→ C ∪ {∞}, mapping
(z1, z2) ∈ S3 to the point z1/z2 ∈ C∪{∞}. This construction
will be important in no time since we will be employing it in
Section 3.

3 Physical application: Spinors

The Hopf fibration turns out to be of the utmost importance
in Physics, particularly in Quantum Mechanics. In this the-
ory, physical systems are described by a mathematical object
known as a state. Contrarily to what happens in Classical
Mechanics, the so-called states are not bundles of specific val-
ues for different properties of the system, but rather hold the
various probabilities of observing all the possible physically
measurable quantities.

One of the easiest and most practical examples to work
with in Quantum Mechanics is the spin 1/2 − system, as
in the case of the electron, which has spin-up (ψ+) and spin-
down(ψ−). These two configurations are exclusive outcomes
of a measurement, occurring with probability p+ and p−, re-
spectively. These two configurations are orthogonal and form
an orthonormal basis of the state space.

In order to have a consistent description of the system, if
two electrons have the same values for p+ and p−, they are
said to be in the same quantum state, despite the fact they
can be in different mixtures of p+ and p−. This gives us a
hint on how to proceed in the formalization of the quantum
state: the quantum state (a theoretical mathematical object)
and the physical reality must coincide. The quantum state
of an electron must then be described by an equivalence class
over a set of states that yield the same physical result.

Definition 4 C2 can be equipped with the inner product op-
erator ⟨·|·⟩ : C2 ×C2 −→ C, which is defined by the following
properties:

1. Symmetry: ∀ψ, ϕ ∈ C2, ⟨ψ|ϕ⟩ = ⟨ψ|ϕ⟩
2. Bilinearity: ∀ψ, ϕ, ζ ∈ C2 and a, b ∈ C, ⟨aψ + bϕ|ζ⟩ =

ā⟨ψ|ζ⟩+ b̄⟨ϕ|ζ⟩ and ⟨ψ|aϕ+ bζ⟩ = a⟨ψ|ζ⟩+ b⟨ϕ|ζ⟩
3. Positive definiteness: ∀ψ ∈ C2, ⟨ψ|ψ⟩ ∈ R ⊆ C and

⟨ψ|ψ⟩ ≥ 0 and ⟨ψ|ψ⟩ = 0 if and only if ψ = 0.

C2 is an example of a Hilbert Space.

It follows that the inner product of two state vectors ψ =
(ψ1, ψ2) and ϕ = (ϕ1, ϕ2) can be computed by

⟨ψ|ϕ⟩ = ψ1ϕ1 + ψ2ϕ2.

Definition 5 The norm of the inner product is given by the
map || · || : C2 −→ R such that:

||ψ|| =
√
⟨ψ|ψ⟩, ∀ψ ∈ C2.

Definition 6 The state of an electron is defined as an ele-
ment ψ ∈ S(C2), where S(C2) = {ψ ∈ C2 : ||ψ|| = 1}.
Definition 7 Two states ψ, ϕ ∈ S(C2)are considered equival-
ent if ∃λ ∈ C \ {0} such that ϕ = λψ.

Note that for the definitions above to be physically consist-
ent, any two electrons in the same quantum state must, upon

measurement, return similar outcomes. The measurement of
an observable of the system can return many outcomes. What
we are really looking for is for the expected value of these
measurements to coincide.

In Quantum Mechanics, the expected value of an observable
is determined in the following way:

Proposition 2 Each observable is associated with a linear
operator Ô. The expected value of the observable Ô over a
system in quantum state ψ, Oψ, is given by

Oψ = ⟨ψ|Ô|ψ⟩

For the spin - 1/2 system the observables are the 3 - dimen-
sional components of the spin vector s = (sx, sy, sz). Each of
these components is an observable whose related linear oper-
ators are the Pauli-Matrices:

Ŝx =

(
0 1
1 0

)
, Ŝy =

(
0 −i
i 0

)
, Ŝz =

(
1 0
0 −1

)
.

Proposition 3 Two electrons in the same quantum state
[ψ] have the same expected value for the spin vector s =
sxx̂ + sy ŷ + sz ẑ. This implies that there exists a one-to-one
correspondence between quantum states and expected values of
the spin vector, which is guaranteed by the Hopf Fibration.

To see why this holds, we work over S(C2), which is homeo-
morphic to S3. Note that there is a correspondence between
spin vectors and points of S2.

Figure 2: Spin Visualization

Consider the map g : S3 −→ S2, which takes ψ 7→ s̄(ψ).
Then:

g

(
ψ1

ψ2

)
= ⟨ψ|Ŝxψ⟩x̂+ ⟨ψ|Ŝyψ⟩ŷ + ⟨ψ|Ŝzψ⟩ẑ =〈(

ψ1

ψ2

)
|
(
ψ2

ψ1

)〉
x̂+

〈(
ψ1

ψ2

)
|
(
−iψ2

iψ1

)〉
ŷ+

〈(
ψ1

ψ2

)
|
(
−ψ1

ψ2

)〉
ẑ

= (ψ1ψ2 + ψ2ψ1)x̂+ i(ψ2ψ1 − ψ1ψ2)ŷ + (ψ1ψ1 − ψ2ψ2)ẑ

Once again we now have a hint on how to proceed, let
z = x+ iy, then:

x =
ψ1ψ2 + ψ2ψ1

1− ψ1ψ1 + ψ2ψ2

=
ψ1ψ2 + ψ2ψ1

2ψ2ψ2

= Re

(
ψ1

ψ2

)
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y = − i(ψ2ψ1 − ψ1ψ2)

1− ψ1ψ1 + ψ2ψ2

= − i(ψ2ψ1 − ψ1ψ2)

2ψ2ψ2

= Im

(
ψ1

ψ2

)
If through the stereographic projection we view S2 as the ex-
tended complex plane, then the map g : (ψ1, ψ2) −→ ψ1/ψ2 is
precisely the quotient map f : S3 −→ S2 defined before. This
map f is the exact same as the Hopf map p redefined for CP1,
since CP1 is the quotient space of S3 with (z1, z2) ∼ (w1, w2)
iff (z1, z2) = c(w1, w2) for some c ∈ C, which is true iff
z1/z2 = w1/w2. Hence there is a correspondence between
ψ1/ψ2 and [ψ1 : ψ2] and thus the map g : ψ −→ s̄(ψ) is the
fiber map of the Hopf Fibration S1 ↪→ S3 → S2.

Figure 3: Stereographic Projection

Note that g sends ψ, ϕ ∈ S3 to the same image iff ψ = λϕ,
where |λ| = 1. This tells us that they are in the same equi-

valence class of the Hopf map, i.e., they represent the same
quantum state, which establishes the so desired correspond-
ence we were looking for.

4 Conclusion

This small paper sheds some light on the connection between
Hopf Fibration and Spinors, as exemplified by the case of the
spin−1/2 system. This structure is what motivates the con-
sistency between the mathematical theory of Quantum Mech-
anics behind Spinors and the physical reality observed in the
corresponding systems. We covered a simple case, but more
can be found about this relationship (See [2] for instance).
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