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I. INTRODUCTION

Thermodynamics is an universal physical theory
that describes the equilibrium states of a generic
system determined by the surroundings with which
they can coexist and which can be described by a
few macroscopic parameters. These parameters are
usually its internal energy (U), pressure (P ) entropy
(S), temperature (T ), volume (T ) etc. Depend-
ing on the complexity of the system, these param-
eters will be differently correlated, and the number
of independent parameters is called the number of
degrees of freedom of the system. The simplicity
of this description allows the theory to hold in a
plethora of different physical systems, such as heat
engines, refrigeration systems, metabolism, or even
black holes.

A very important notion to have in mind while
studying thermodynamics is that of equilibrium -
it refers to a condition in which a system has set-
tled into a stable, unchanging configuration concern-
ing its macroscopic properties under given external
conditions. It’s a state where observable properties
such as temperature, pressure, volume, and chemi-
cal composition remain constant over time.

The mathematical theory of thermodynamic sys-
tems focuses on one such system, and describes ge-
ometrically the set of equilibrium states it can have.
The allowed modes of interaction with the surround-
ings define the equilibrium.

II. MATHEMATICAL FOUNDATIONS
OF THERMODYNAMICS

We start by defining the manifold M as the set of
equilibrium states of a thermodynamic system. The
dimension of M will be the number of degrees of
freedom, defined above. It is worth to mention that
this number may depend on the time scale of the
system that we are interested in.

A path in a M is a differentiable one-parameter
family of points defined by a continuous function ϕ
that maps an interval in the real numbers to points

in M. In thermodynamics such path is called qua-
sistatic locus because every point on the path is in
equilibrium state, and it is a good example of a pro-
cess that occurs on time scales that are slower than
the equilibrium time of the system.

Recalling the definition of tangent vectors at a
given point (or state) in manifolds, they can be
thought of as n-tuples of the time derivatives of the
coordinate charts at a point. Thus a tangent vec-
tor represents any path that has the same instanta-
neous values of all these derivatives. By the chain
rule, a tangent vector assigns a time derivative to
any function of state. For example, if we have a
simple system where the two independent parame-
ters are entropy and pressure and we want to write
the derivative of a function of state f , we have:

df

dt
=

∂f

∂S

∂S

∂t
+

∂f

∂P

∂P

∂t
,

where the derivative was assigned by the tangent
vector (dSdt ,

dP
dt ).

As tangent vectors at a point can be thought of
as equivalence classes of paths along which a set of
coordinate functions changes at the same rate, the
cotangent vector at a point is an equivalence class of
functions where two functions are said to be equiv-
alent if their derivatives are the same along every
tangent vector at the point. This may be identified
at a each point (S0, P0) with the differential of any
F in the equivalence class:

dF = fdS + gdP.

As tangent vectors form a vector space called tan-
gent space, the cotangent vectors also form a vec-
tor space, that is the dual of the tangent space.
Thus the cotangent vectors are linear functionals
that map tangent vectors to R.

With both the notions of tangent and cotangent
vectors in mind, come the notions of vector field and
differential form. The development of thermody-
namics can me made using one of this prescriptions,
but typically one uses differential forms. Important
examples of differential forms are work W and heat
Q.
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To delve deeper to the important results, the no-
tions of exterior derivative and wedge product are
needed, highlighting the antisymmetry of this prod-
uct.

III. LAWS OF THERMODYNAMICS

The first law of thermodynamics can be written
as:

dU = Q+W (1)

where U is the internal energy of the system. When
the differential forms Q and W are written in coor-
dinates, this equation becomes a Pfaffian differential
equation, and the Frobenius and Darboux theorems
are the main results concerning these equations.

To obtain relevant results from this equations ex-
plicitly, one is interested in taking the differential
or exterior derivative of (1). The set of differential
forms with the wedge product form a ring. If one
rewrites (1) as

dU −Q−W = 0,

one may notice that this is equivalent to finding a
1-form that vanishes on the solution submanifold,
so the set of these differential forms must form an
ideal. The fact that these ideals must be closed un-
der the operation of taking a differential, yields the
extension of the d(.) operator to higher order dif-
ferentials:

- d(.) of a function gives the differential, d(d(f)) =
0, and:

d(v ∧ w) = dv ∧ w + (−1)kv ∧ dw,

where w is a k-form and v any form. The cele-
brated Maxwell relations can now be readily ob-
tained: take Q = TdS (2nd law of thermodynamics)
and W = −PdV (work done by the surroundings
on the system), plug this in (1) and take the differ-
ential. Applying the prescription d(d(f)) = 0 one
gets:

0 = dT ∧ dS − dP ∧ dS. (2)

Expanding dT in coordinates (S, V ) : dT = ∂T
∂S dS+

∂T
∂V dV , doing the same with dP and evoking anti-
symmetry of the wedge product one gets:((

∂T

∂V

)
S

+

(
∂P

∂S

)
V

)
dV ∧ dS = 0

which yields: (
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

where the subscript in the partial derivatives de-
notes that the derivative is taken leaving that pa-
rameter constant. The other Maxwell relations can
be obtained from (2) expanding the different differ-
entials in different coordinates.

We saw a particular case of a solution of (1), but
can this equation always be integrated? Frobenius’s
theorem guarantees that for every system of differ-
ential form equations:

wj = 0, j = 1, ..., N

where each wj is an 1-form on M, there is a dif-
ferential ideal of forms generated by wj which must
vanish on any solution of the equation. Specifically,
it is an ideal in which the exterior derivative of any
form in the ideal is still in the ideal.

If one wants to solve a single equation of the form
w = 0, one can take differentials and wedge products
of the equation successively:

dw,w ∧ dw, dw ∧ dw,w ∧ dw ∧ dw, ..... (3)

On any solution of the equation, every single one
of this differentials must vanish, but some of them
may be identically zero in M. If one is zero, all
the subsequent ones are zero. Suppose that the first
identically zero terms appears in the position r of
the sequence (3): then r is the minimum number of
variables needed to express w.

Furthermore, suppose that the parameters are la-
beled by Xi, Yi and Z. Darboux’s theorem states
that these smooth independent functions exist and
for r given by:

• r = 2n : w =
∑n

i YidXi

• r = 2n+ 1: w = dZ +
∑n

i YidXi.

And the dimension of the maximal solutions of w =
0 is n.

These theorems can be applied to (1), to obtain
r = 5 and thus the maximal solutions of the equa-
tion are two dimensional. As mentioned before, the
equilibrium states that are obtained solving (1) live
in a n dimensional manifold, and one can think of a
thermodynamic system as a submanifold of a 2n+1
manifold equipped with a differential form Ω such
that Ω ∧ (dΩ)n ̸= 0. These are so called contact
manifolds that arise frequently in classical mechan-
ics.

Finally, it is noteworthy to mention that in our
case, Ω = dU − TdS +PdV so the set of dependent
variables is (U, T, S, P, V ). However, one can always
perform Legendre transform to other variables, that
preserve the form w = dZ +

∑n
i YidXi.
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