Description of Electrodynamics with differential geometry

Gonçalo Esteves

January 10, 2024

1 Introduction

Let (\mathcal{M}, g) be a Lorentzian manifold, where \mathcal{M} is four dimensional (homeomorphic to \mathbb{R}^{4}) and g : $T_{q} M \times T_{q} M \rightarrow \mathbb{R}$ is a Lorentzian metric with the signature $(-,+,+,+)$, defined as

$$
g(v, w)=-v^{0} w^{0}+v^{1} w^{1}+v^{2} w^{2}+v^{3} w^{3}
$$

where $v=v^{0} \partial_{\mathbf{0}}+v^{1} \partial_{\mathbf{1}}+v^{2} \partial_{\mathbf{2}}+v^{3} \partial_{\mathbf{3}}$ and $w=w^{0} \partial_{\mathbf{0}}+w^{1} \partial_{\mathbf{1}}+w^{2} \partial_{\mathbf{2}}+w^{3} \partial_{\mathbf{3}}$, with $\partial_{\mathbf{i}}=\frac{\partial}{\partial x^{i}}$. Notice that coordinates in \mathcal{M} are denoted by $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$, where we want to identify x^{0} with "time" and the other coordinates with "space".

With the structure of \mathcal{M} defined, we now want to define the electromagnetic field associated with the source 1-form \mathcal{J} on \mathcal{M}, as the 2 -form \mathcal{F} on \mathcal{M} which satisfies the homogeneous Maxwell's equation,

$$
\begin{equation*}
d \mathcal{F}=\mathbf{0} \tag{1}
\end{equation*}
$$

and the inhomogeneous Maxwell's equation,

$$
\begin{equation*}
\delta \mathcal{F}=\mathcal{J} \tag{2}
\end{equation*}
$$

where the operator $\delta: \Omega^{k}(\mathcal{M}) \rightarrow \Omega^{k-1}(\mathcal{M})$ is called the codifferential and is given by,

$$
\begin{equation*}
\delta=(-1)^{k} \star^{-1} d \star=(-1)^{n(k-1)+1} s \star d \star . \tag{3}
\end{equation*}
$$

The operator \star is the Hodge star operator which in \mathcal{M} and in component notation is given by,

$$
\begin{gather*}
\star\left(d x^{\mu}\right)=g^{\mu \lambda} \varepsilon_{\lambda \nu \rho \sigma} \frac{1}{3!} d x^{\nu} \wedge d x^{\rho} \wedge d x^{\sigma} \tag{4}\\
\star\left(d x^{\mu} \wedge d x^{\nu}\right)=g^{\mu \kappa} g^{\nu \lambda} \varepsilon_{\kappa \lambda \rho \sigma} \frac{1}{2!} d x^{\rho} \wedge d x^{\sigma} \tag{5}
\end{gather*}
$$

where $\varepsilon_{\lambda \nu \rho \sigma}$ is the Levi-Civita symbol with $\varepsilon_{0123}=1$. The Hodge star of 3 and 4 -forms can be easily deduced from the fact that, in the Lorentzian signature, $(\star)^{2}=1$ for odd-rank forms and $(\star)^{2}=-1$ for even-rank forms.

2 Connection with the traditional formalism

Let's start with equation 1 . We can write \mathcal{F} in components as,

$$
\begin{aligned}
\mathcal{F}= & F_{1} d x^{0} \wedge d x^{1}+F_{2} d x^{0} \wedge d x^{2}+F_{3} d x^{0} \wedge d x^{3} \\
& +F_{4} d x^{1} \wedge d x^{2}+F_{5} d x^{1} \wedge d x^{3}+F_{6} d x^{2} \wedge d x^{3}
\end{aligned}
$$

and \mathcal{J} as,

$$
\mathcal{J}=J_{0} d x^{0}+J_{1} d x^{1}+J_{2} d x^{2}+J_{3} d x^{3} .
$$

Using the fact that $d\left(F_{i} d x^{\mu} \wedge d x^{\nu}\right)=d F_{i} \wedge d x^{\mu} \wedge d x^{\nu}, d \mathcal{F}$ becomes,

$$
\begin{align*}
d \mathcal{F}= & d F_{1} \wedge d x^{0} \wedge d x^{1}+d F_{2} \wedge d x^{0} \wedge d x^{2}+d F_{3} \wedge d x^{0} \wedge d x^{3} \\
& +d F_{4} \wedge d x^{1} \wedge d x^{2}+d F_{5} \wedge d x^{1} \wedge d x^{3}+d F_{6} \wedge d x^{2} \wedge d x^{3} \tag{6}
\end{align*}
$$

Because $F_{i}=F_{i}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ we have that $d F_{i}=\frac{\partial F_{i}}{\partial x^{0}} d x^{0}+\frac{\partial F_{i}}{\partial x^{1}} d x^{1}+\frac{\partial F_{i}}{\partial x^{2}} d x^{2}+\frac{\partial F_{i}}{\partial x^{3}} d x^{3}$. Plugging this into equation 6 and rearranging the terms we get,

$$
\begin{align*}
d \mathcal{F}= & \left(\frac{\partial F_{1}}{\partial x^{2}}-\frac{\partial F_{2}}{\partial x^{1}}+\frac{\partial F_{4}}{\partial x^{0}}\right) d x^{2} \wedge d x^{0} \wedge d x^{1}+\left(\frac{\partial F_{1}}{\partial x^{3}}-\frac{\partial F_{3}}{\partial x^{1}}+\frac{\partial F_{5}}{\partial x^{0}}\right) d x^{3} \wedge d x^{0} \wedge d x^{1} \\
& +\left(\frac{\partial F_{2}}{\partial x^{3}}-\frac{\partial F_{3}}{\partial x^{2}}+\frac{\partial F_{6}}{\partial x^{0}}\right) d x^{3} \wedge d x^{0} \wedge d x^{2}+\left(\frac{\partial F_{6}}{\partial x^{1}}-\frac{\partial F_{5}}{\partial x^{2}}+\frac{\partial F_{4}}{\partial x^{3}}\right) d x^{1} \wedge d x^{2} \wedge d x^{3} \tag{7}
\end{align*}
$$

Setting all components to zero so that equation 1 is satisfied, we have,

$$
\left\{\begin{array}{l}
\frac{\partial F_{1}}{\partial x^{2}}-\frac{\partial F_{2}}{\partial x^{1}}=-\frac{\partial F_{4}}{\partial x^{0}} \tag{8}\\
\frac{\partial F_{1}}{\partial x^{3}}-\frac{\partial F_{3}}{\partial x^{1}}=-\frac{\partial F_{5}}{\partial x^{0}} \\
\frac{\partial F_{2}}{\partial x^{3}}-\frac{\partial F_{3}}{\partial x^{2}}=-\frac{\partial F_{6}}{\partial x^{0}} \\
\frac{\partial F_{6}}{\partial x^{1}}-\frac{\partial F_{5}}{\partial x^{2}}+\frac{\partial F_{4}}{\partial x^{3}}=0
\end{array}\right.
$$

We now turn to equation 2 in which we have to calculate, $\delta \mathcal{F}=\star d \star \mathcal{F}$. Using equations 4 and 5 we get,

$$
\begin{aligned}
\delta \mathcal{F}= & -\left(\frac{\partial F_{1}}{\partial x^{1}}+\frac{\partial F_{2}}{\partial x^{2}}+\frac{\partial F_{3}}{\partial x^{3}}\right) d x^{0}-\left(\frac{\partial F_{5}}{\partial x^{3}}+\frac{\partial F_{4}}{\partial x^{2}}+\frac{\partial F_{1}}{\partial x^{0}}\right) d x^{1} \\
& +\left(-\frac{\partial F_{6}}{\partial x^{3}}+\frac{\partial F_{4}}{\partial x^{1}}-\frac{\partial F_{2}}{\partial x^{0}}\right) d x^{2}+\left(\frac{\partial F_{6}}{\partial x^{2}}+\frac{\partial F_{5}}{\partial x^{1}}-\frac{\partial F_{3}}{\partial x^{0}}\right) d x^{3}
\end{aligned}
$$

Equalizing to \mathcal{J} component wise, we get the system of equations,

$$
\left\{\begin{array}{l}
\frac{\partial F_{5}}{\partial x^{3}}+\frac{\partial F_{4}}{\partial x^{2}}+\frac{\partial F_{1}}{\partial x^{0}}=J_{1} \tag{9}\\
\frac{\partial F_{6}}{\partial x^{3}}-\frac{\partial F_{4}}{\partial x^{1}}+\frac{\partial F_{2}}{\partial x^{0}}=J_{2} \\
-\frac{\partial F_{6}}{\partial x^{2}}-\frac{\partial F_{5}}{\partial x^{1}}+\frac{\partial F_{3}}{\partial x^{0}}=J_{3} \\
\frac{\partial F_{1}}{\partial x^{1}}+\frac{\partial F_{2}}{\partial x^{2}}+\frac{\partial F_{3}}{\partial x^{3}}=J_{0}
\end{array}\right.
$$

By renaming $J_{0}=-\rho$ and the components of \mathcal{F} to be,

$$
\left\{\begin{array}{l}
F_{1}=-E_{1} \\
F_{2}=-E_{2} \\
F_{3}=-E_{3} \\
F_{4}=B_{1} \\
F_{5}=-B_{2} \\
F_{6}=B_{3}
\end{array}\right.
$$

and defining the vector fields on the submanifold $\mathbf{E}^{\mathbf{3}}$ (three dimensional euclidean space),

$$
\begin{aligned}
& \mathbf{E}=E_{1} \partial_{1}+E_{2} \partial_{2}+E_{3} \partial_{3} \\
& \mathbf{B}=B_{1} \partial_{1}+B_{2} \partial_{2}+B_{3} \partial_{3} \\
& \mathbf{J}=J_{1} \partial_{1}+J_{2} \partial_{2}+J_{3} \partial_{3}
\end{aligned}
$$

equations 8 and 9 become,

$$
\left\{\begin{array}{l}
\nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial x^{0}} \\
\nabla \cdot \mathbf{E}=\rho \\
\nabla \times \mathbf{B}=\mathbf{J}+\frac{\partial \mathbf{E}}{\partial x^{0}}
\end{array}\right.
$$

which are the familiar Maxwell's equations in vector calculus notation.

