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Abstract
A summary of the representation theory of SUn is given, with special focus on SU3 and its Lie algebra

representations. Essential applications of this theory to particle physics are detailed, accompanied by a
historical contextualization.

1 Representations of SU3

1.1 Representations of Lie Groups
Let us begin by discussing the algebraic and topological structure of SUn, n � 2. As a set, it consists of all

n ⇥ n unitary matrices with determinant 1. It is a subgroup of GLn(C) ⇠= R2n2

which is closed and bounded,
thus compact. From Cartan’s closed subgroup theorem, it is also a submanifold of GLn(C) and a (matrix) Lie
group, of dimension n

2 � 1 (which we’ll prove later). Furthermore, it is simply connected. This can be proved
by considering the action SUn

�y S
2n�1 (Prop. 13.11, in [1]). The action is transitive, and the stabilizer of

each point p 2 S
2n�1 is Gp = SUn�1 and so SUn is a fiber bundle with base S

2n�1 and fiber SUn� 1. By a
standard topological argument, we can then deduce that ⇡1(SUn) ⇠= ⇡1(SUn�1), and, since ⇡1(SU2) ⇠= ⇡1(S3)
is trivial, by induction, we get the result.

The Lie algebra of SUn, denoted by sun ⇠= TInSUn, can be identified as the algebra of the n⇥n antihermitian,
traceless matrices, by differentiating the exponential map. Like for any matrix Lie algebra, the left-invariant
vector field commutator bracket in XL(G) descends to the matrix commutator bracket in g to endow it with
a Lie algebra structure. It is straightforward then to see that dimR sun = n

2 � 1, which is thus the same real
dimension as the Lie group SUn.

Now, the power of Lie theory comes from the fact that we can study the Lie group and its representations
through their linearization on the Lie algebra. This is evidenced through a series of results collectively called
the Lie group-Lie algebra correspondence. Firstly, we should note any finite-dimensional representation of the
Lie group � : G ! GLn(C) induces a Lie algebra representation through its pushforward �⇤ : g ! gl

n
(C).

The subtle point of this correspondence is thus the converse of the previous assertion. The two most important
theorems are:

Theorem 1.1 (Homomorphism theorem, 5.6 [1]). Let G and H be matrix Lie groups with Lie algebras g and

h resp., and let � : g ! h be a Lie algebra homomorphism. If G is simply connected, there exists a unique Lie

group homomorphism � : G ! H such that �(eX) = e
�(X)

, 8X 2 g.

Theorem 1.2 (Lie’s third theorem, 5.25 [1]). If g is a finite-dimensional real Lie algebra, there exists a connected

Lie subgroup G ⇢ GLn(C) whose Lie algebra is isomorphic to g.

The first theorem is proved by inverting the exponential map (which is surjective for compact Lie groups)
via the Baker-Campbell-Hausdorff formula. The second is a consequence of Ado’s theorem, which asserts that
every finite-dimensional real (or complex) Lie algebra is isomorphic to a matrix Lie algebra. In tandem, these
two results allow us to create a bijection between the finite-dimensional representations of a matrix Lie group
and the ones of its Lie algebra, and so classifying the former reduces to classifying the latter.

1.2 Representations of Lie algebras
In order to better study the representations of the real Lie algebra g = su3, we will rely heavily on the

following theorem:

Proposition 1.3 (4.6 [1]). Let g be a real Lie algebra and gC its complexification, then every finite-dimensional

complex representation � of g has a unique extension to a complex-linear representation of gC. Furthermore, �

is irreducible as a representation of gC if and only if it is irreducible as a representation of g.

1



Moreover, using "Weyl’s unitary trick", we can prove that every finite-dimensional representation of a
compact Lie group, and so its Lie algebra, is completely reducible. We can thus restrict our attention to
the irreducible representations of the complexification gC, since, by restriction, they induce finite-dimensional
representations on the real form g, and thus on the Lie group G. For the case of sun, the complexification can
be readily seen to be the Lie algebra sln(C) of n⇥ n traceless matrices, which is simple (ie. has no non-trivial
ideals), but in general, it might only be semi-simple (ie. a direct sum of simple Lie algebras). The following
discussion is valid also for semi-simple Lie algebras, so we’ll stay in that context.

A complex semi-simple Lie algebra g contains a unique maximal abelian subalgebra h ⇢ g such that adH
are simultaneously diagonalizable 8H 2 h, called a Cartan subalgebra, whose (complex) dimension is the rank

r of g. Given a representation (�, V ) of g, a weight � for that representation is a linear functional � : h ! C
such that �(H)v = �(H)v, 8H 2 h, 8v 6= 0 2 V . For the adjoint representation ad : g 7! adg, the weights are
called roots. The Cartan subalgebra has a real subspace hR of (real) dimension equal to the rank, which inherits
an inner product structure from the Killing form of g. The dual of this space is spanned by the r roots, and
we can represent the roots and weights in a lattice ⇤ ⇢ Rr (see Fig. 1). We can define a partial order on the
weights, which allows us to state the central theorem of this section:

Theorem 1.4 (Theorem of the highest weight, 9.4 and 9.5 [1]). Every irreducible (finite-dimensional) repre-

sentation of a semi-simple complex Lie algebra g has a highest weight �max (which is always dominant and

algebraically integral), and conversely, every dominant, algebraically integral element is the highest weight of

an irreducible representation. Furthermore, two irreducible representations with the same highest weight are

isomorphic.

This exceptional theorem fully classifies all the finite-dimensional representations via their highest weight.
The hardest part of the proof is indeed in the converse, since it is non-elementary to construct the representations
in question. In the case of sln(C), there is a simple construction we will highlight in the next section, using the
tensor product and the Clebsch-Gordan decomposition.

For the 8-dimensional Lie algebra sl3(C) (of rank 2), we can work with the basis of the Cartan algebra:

H1 =

0

@
1 0 0
0 �1 0
0 0 0

1

A , H2 =

0

@
0 0 0
0 1 0
0 0 �1

1

A (1)

An irreducible representation � is then classified by the largest eigenvalues m1, m2 2 N of �(H1), �(H2),
resp., and denoted by D(m1,m2) (the respective roots are ↵ and � in Fig. 1). All the weights of the representa-
tion can be reached from the highest weight by subtracting multiples of the roots, in sequences called ↵-strings
(important examples can be seen in Fig. 2 and 3). These representations have dimensions given by:

d(m1,m2) =
1

2
(m1 + 1)(m2 + 1)(m1 +m2 + 2) (2)

In the next section, we will discover how these results are take central stage in particle physics.

2 Application in Physics

2.1 Symmetries and Isospin
In quantum mechanics, two states of a Hilbert space H that are multiples of each other by a complex number

are identified, thus creating a projective Hilbert space P(H) called the ray space. In 1931, at the onset of the
mathematical formulation of quantum mechanics, Wigner proved a fundamental theorem of the mathematical
formulation of quantum mechanics [2]:

Theorem 2.1 (Wigner, 1931 [3]). If T : P(H) ! P(H 0) is an isometry, then there exists either a linear and

unitary or antilinear and antiunitary isometry U : H ! H
0
which represents T , up to a phase factor.

If the symmetry group G 3 T is (semi)simple and simply connected, then the phase factor can be taken
to be always one. This suggests that the (Lie) groups Un have a special place in quantum mechanics as the
allowed symmetries of the theory.

One year later, Heisenberg introduced the concept of isospin to explain why the proton and neutron were
affected equally by the strong force despite having different charges. He proposed the strong interaction had
a (approximate) flavor symmetry under the action of the Lie group SU2 (you might ask, why not U2? see
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footnote1). This was corroborated by the fact that the mesons appeared in triplet 3 and singlet 1 representations,
like for the SU2 angular momentum (described by 2⌦ 2 = 3� 1 for the mesons, 2⌦ 2⌦ 2 = 4� 2� 2 for the
baryons).

With all we have said here, one could explicitly describe the up and down isospin components and find
their charges (the up and down quarks!), if one had the insight, but already in the 50s, the isospin model was
insufficient to fully characterize the "particle zoo", since it failed to account for the property of strangeness

(strange quark content). This prompted Gell-Mann and Ne’eman to independently suggest in 1961 to extend
the flavor symmetry group to SU3 [4]. The mesons were organized into octets and singlets, and the baryons into
octets and decuplets. Only afterwards, in 1964, did Gell-Mann and Zweig independently realize these groupings
of particles were a consequence of combining the quarks in SU3 flavor symmetric representations. In the quark
model, the mesons could be better interpreted as a nonet: 3 ⌦ 3̄ = 8 � 1 (see Fig. 4). For baryons, we get
3 ⌦ 3 ⌦ 3 = 10 � 8 � 8 � 1 (see Fig. 5). An important remark is that these flavor symmetries are not exact
since the mass of the up, down, and strange quarks are slightly different (the strange quark is quite a bit more
massive), and there are other symmetry breaking subtleties we are not addressing here.

Lastly, the study of the �++ led to the discovery of another SU3 symmetry, this one exact: the color charge.
The spin 3

2 �++ baryon required three up quarks with parallel spins and vanishing orbital angular momentum,
which would violate the Pauli exclusion principle. Han and Nambu suggested the existence of this hidden
degree of freedom which is intertwined with the flavor symmetry. Since color cannot be observed, the only
physical representations are the ones which contain a singlet (or trivial) representation, ie. 3 ⌦ 3̄, 3 ⌦ 3 ⌦ 3,
3⌦3⌦3⌦3⌦3̄, etc. For this symmetry, the quarks transform in the fundamental representation, the antiquarks
in the antifundamental, and the 8 gluons in the adjoint.

It is noteworthy to elaborate on the construction alluded to above. Let’s take the example of sl3(C) (works
similarly for any sln(C)). First, we construct the fundamental representations, consisting of the standard
representation � = Id (fundamental 3, �max = (1, 0)) and the dual �(X) = �X

t (antifundamental 3̄, �max =
(0, 1)). We can then tensor product m1 times 3 and m2 times 3̄ and then extract the invariant subspaces (Prop.
6.17 [1]): this process creates all irreducible representations since it creates all highest weights �max.

We conclude by mentioning a powerful method for decomposing the above tensor products of SUn group
representations into a sum of irreducible representations: using Young tableaux, a useful combinatorics tool.
An example can be found in Fig. 6.
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Figure 1: Root system of sl3(C) (A2).

Figure 2: Weight lattices of the fundamental (3, (1, 0)), antifundamental (3̄, (0, 1)) and adjoint (8, (1, 1))
representations of sl3(C). The arrows correspond to the roots: blue for ↵, green for �, orange for ↵+ �.[7]

Figure 3: Weight graphs of the representations in Fig. 2.[7]
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Figure 4: Nonet of spin 1 mesons.

Figure 5: Decuplet of spin 3
2 baryons.

Figure 6: Young diagrams of the decomposition D(1, 0)⌦D(1, 1) = D(2, 1)�D(0, 2)�D(1, 0).
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