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Extremely light introduction to Galois Theory

Armando Gonçalves1,a

1MEFT, 100290

Abstract. Brief discussion of some jargon related to Galois Theory, mentioning some applications to engineer-
ing. The discussion will largely follow the content of the YouTube channel Mathemaniac’s video on Galois
Theory, that can be found here.
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1 Introduction

The applications of Galois Theory span across various do-
mains, influencing cryptographic protocols based on finite
fields, aiding design graphics, computer vision, and geo-
metric modeling; the study of dynamical systems benefits
from Galois Theory as well, particularly in the analysis of
polynomial transformations, revealing connections to Ju-
lia sets and the Mandelbrot set. Its role extends to control
engineering, where problems related to stability and opti-
mal control are cast in terms of polynomial equations. Its
relevance also extends to coding theory, information trans-
mission, and mathematical modeling, making it a corner-
stone in the toolkit of applied mathematics. Polynomial
equations are prevalent in engineering and physics. Tra-
jectories in robotic systems play a pivotal role in defining
the motion of robotic arms or manipulators. These tra-
jectories, often represented as a series of joint positions
over time, determine how a robot moves from one point
to another. The challenge lies in planning these trajecto-
ries effectively to ensure smooth and efficient movements,
considering factors such as joint limits, singularities, and
the overall task at hand. Quintic polynomials are com-
monly employed to generate trajectories that adhere to
specific constraints[1][2], ensuring not only positional ac-
curacy but also maintaining velocity and acceleration pro-
files. Fifth-degree polynomial equations can be encoun-
tered as well in certain fields like civil engineering, com-
puter graphics, among others (see [3][4][5]).

It is therefore essential to know how to solve these
polynomial equations. The current approach to solve
quintic equations is through numerical methods, predom-
inantly employing techniques like Newton’s method. De-
spite its effectiveness, this computational method can be
slower1 and less reliable, sometimes requiring the selec-
tion of an appropriate initial value, and there are instances
where it may not work consistently. However, as estab-
lished by the works of Galois and Abel-Ruffini, it is the
only viable way to do so, as quintic equations do not pos-
sess analytical solutions. In this way, the ensuing discus-
sion aims to give a light-weighted introduction to some
Galois Theory, referring some terminology and ideas.
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1When compared to directly plugging in the analytical solutions, in

the quartic equation case.

2 Field Extensions

As we have seen in our classes, the set of rational num-
bers Q forms a field, as it is a ring with commutative mul-
tiplication, and all elements in Q \ {0} have multiplica-
tive inverses. We now need to introduce the concept of
a field extension. For example, Q(

√
2) is the set of ratio-

nals extended along with all combinations a+b
√

2, where
a, b ∈ Q. We can perform successive extensions (or radical

extensions) such as Q( 5√23) → Q( 5√23,
3
√

1 + 5√23) → . . .
- and if the equation is solvable, we can find successive
extensions that ultimately lead to an extension of rationals
containing all the roots of the polynomial (the analytical
solution, at last!...). The splitting field is the smallest field
extension of Q that includes all the roots of the polyno-
mial.

3 Galois Group

An automorphism is a surjective function that maps a
field L to itself σ : L→ L, with the following properties:

(1) σ(x⋆y) = σ(x)⋆σ(y) for⋆ = +, ·,÷ and x, y ∈ L

(2) σ(x) = x if x ∈ K ⊆ L2

An example of an automorphism is the conjugation op-
eration for L = C and K = R.

Now, let’s consider the situation where K is the field
where the coefficients of an arbitrary polynomial p(x) =
anxn + an−1xn−1 + ... + a1x + a0 "live," and L is the split-
ting field of p(x). By this point forward, we always
assume there are no repeated roots. If we consider an
α ∈ {α : p(α) = 0} and plug it into p(x), that is p(α),
we get 0 = an(α)n + an−1(α)n−1 + ... + a1(α) + a0. We can
apply σ(x) to both sides of the equation, and we would
have 0 = anσ(α)n + an−1σ(α)n−1 + ... + a1(α) + a0 (us-
ing properties (1) and (2) and the fact that 0 = an − an =

σ(an) − σ(an) = 0). So σ(α) is also a root of p(x)! That is
σ permutes one root of p(x) to another root (to itself is also
valid). Thus, the extension from K to L, i.e., from the field
with the coefficients of somep(x) extended with the roots
of somep(x), gets a special name: Galois Extension. The
set of the collection of automorphisms σ from the exten-
sion of L over K, or Aut(L/K), forms a group, called the
Galois Group. We can check it forms a group checking
the three properties:

2In this context, we can interpret extension from K to L.

https://youtu.be/zCU9tZ2VkWc?si=JjxZTFN2W5ApQnyJ
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(1) For σ1, σ2, σ3 ∈ Aut(L/K), we have that they are as-
sociative since either σi(x) = x or it is a permutation -
in both cases there is associativity (permutations do as-
sociate);

(2) The neutral element e is given by e(x) = x;

(2) We can always find an inverse automorphism: for x ∈
K, f −1(x) = x, for x outside of K, you do the opposite
permutation of f(x).

4 Tower Extensions

Let’s consider p(x) = x5 − 1 = 0 as an example. It has
5 roots, one of them being 1 ∈ Q. Imagining the unitary
circle in the complex plane, we have the first root (1,0),
the second root, let’s call it ζ, the next one would be ζ2,
and then ζ3 and ζ4. If we consider K = Q and L = Q(ζ),
we have a Galois Extension since L has all the roots of
our equation (indeed ζ l = a + bζ). As we’re adjoining
just the n-th roots of the unity this extension is said to
be Cyclotomic. Also, if we consider an automorphism
σl(ζ) = ζ l, for this specific example, what we observe is
that σlσm(ζ) = σmσl(ζ) = ζ lm, and the Galois Group is
said to be abelian.

On the other hand, if we consider p(x) = x5 − θ = 0,
we will still have 5 roots, but now they will be of the form
{αζ, αζ2, αζ3, αζ4}, where ζ l are the unit solutions scaled
by a certain α. Its Galois Group in this case is once again
abelian, and once again, we can construct a Galois exten-
sion by considering K = Q and L = Q(α, ζ). But note that
it would be perfectly legitimate and equally a Galois Ex-
tension to have chosen K = Q(ζ) and L = Q(α, ζ). When
you adjoint n-th root of some number while the already
n-th roots of unity are already there you have a Kummer
extension. Something we can do and will be important
shortly is to stack Kummer and Cyclotomic extensions:
Q → Q(ζ) → Q(ζ, α). All the extensions that can be
formed with this stacking are too Galois Extensions, as
we defined previously.

5 Relation between Groups

Now let’s consider the tower of Galois extensions K →
L → M, with K containing the coefficients of a poly-
nomial p(x), L being the splitting field of that polyno-
mial, and M being an even larger extended field, along
with their respective Galois groups for each extension:
Aut(L/K), Aut(M/L), and Aut(M/K). If σ ∈ Aut(M/L),
then σ ∈ Aut(M/K), or in other words, Aut(M/L) ⊆
Aut(M/K). Since Aut(M/L) is a group, we conclude that
Aut(M/L) is a subgroup of Aut(M/K). Furthermore, let
σg ∈ Aut(M/K) and σh ∈ Aut(M/L), where l is an ele-
ment belonging to L. σg · σh · σ

−1
g (l) will still belong to L

because (1) g−1(L) = L since if l is in K, g−1(l) = l, and if
l is a root, by definition σ(root) = root, meaning it’s still
in L (2) σh(L) = L by the definition of an automorphism
(3) g(L)=L, similar reasoning applies to g−1. Thus, we can
classify Aut(M/L) as a normal subgroup of Aut(M/K).

On the other hand, Aut(L/K) = Aut(M/K)/Aut(M/L).
Intuitively, when we think about automorphisms of M/K,

M is mapped to M, but L is also mapped to L as we’ve
seen because the elements of K go to K, and the remain-
ing elements of L, the roots, must also be mapped to L by
the way the function σ was defined. So, if we "zoom in"
on L, we can have the same automorphism L/K occurring,
even though, looking through the "window", the other el-
ements of M are being mapped differently — different
automorphisms M/K that leave Aut(M/L) unchanged or
fixed (≡ M/L). In other words, we can construct equiv-
alence classes or "boxes" based on whether the automor-
phisms L/K are the same or different for the different auto-
morphisms M/K — basically it is the mentioned quotient
group.3

6 Whiff of Solvability

Finally, the idea is to create successive extensions of
the form Q → Q(β1) → . . . → Q(β1, . . . , βi) with
βi =

ni
√
θi. All these extensions will either be Kum-

mer or Cyclotomic, until we reach the largest exten-
sion, which will also be, without showing proof, a Ga-
lois Extension. Let’s think about the intermediate ex-
tensions, for example, in G = Aut(Q(β1, β2, . . . , βr)/Q)
and G1 = Aut(Q(β1, β2, . . . , βr)/Q(β1)). As we saw
earlier, G1 would be a normal subgroup of G, and
Aut(Q(β1)/Q) = G/G1. If we now repeat the rea-
soning for G2 = Aut(Q(β1, β2, . . . , βr)/Q(β1, β2)), we
would conclude again that G2 is a normal subgroup
of G. We can repeat the reasoning until Gr−1 =

Aut(Q(β1, β2, . . . , βr)/Q(β1, β2, . . . , βr−1)) and create a
chain of normal subgroups of G. Note that since all ex-
tensions are either Kummer or Cyclotomic, all subgroups
will be abelian, and this type of relationship gets a name:
Solvable. If we can find indeed these normal subgroups,
then the biggest group G is called solvable. If we build an
extension like Q → L → M, where L is a splitting field
and G = Aut(M/Q) is the aforementioned biggest group,
it turns out that if G is solvable, so is G/Aut(M/L). We
reach then our final stop: if our polynomial is solvable
by radicals (we can locate it in this splitting field), then it
is solvable by the Galois group. Or, if the Galois cannot
be solvable, then the polynomial isn’t solvable by radi-
cals. This will have huge implications and would show
why does quintic polynomial equations doesn’t have an
analytical solution, but I’m afraid my journey ends here.
At least for now :)
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