Algebraic and Geometric Methods in Engineering and Physics

Homework 9

Due on November 29

1. Consider the stiffness matrix

$$
K=\left(\begin{array}{cccc}
2 k_{1}+k_{2}+k_{3} & -k_{1} & -k_{2} & -k_{1} \\
-k_{1} & 2 k_{1}+k_{2}+k_{3} & -k_{1} & -k_{2} \\
-k_{2} & -k_{1} & 2 k_{1}+k_{2}+k_{3} & -k_{1} \\
-k_{1} & -k_{2} & -k_{1} & 2 k_{1}+k_{2}+k_{3}
\end{array}\right)
$$

and the mass matrix $M=m I$, where where k_{1}, k_{2}, k_{3} and m are positive numbers.
(a) Show that these matrices define intertwiners for the representation $D_{4} \stackrel{\psi}{\curvearrowright} \mathbb{C}^{4}$ of the group $D_{4} \equiv\left\{e, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ defined by

$$
\psi_{r}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \psi_{s}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

(b) Recall that $\psi \sim \varphi^{(1)} \oplus \varphi^{(3)} \oplus \varphi^{(5)}$, where the irreducible representations $\varphi^{(1)}, \varphi^{(3)}$ and $\varphi^{(5)}$ are defined by $\varphi_{r}^{(1)}=\varphi_{s}^{(1)}=1, \varphi_{r}^{(3)}=-1, \varphi_{s}^{(3)}=1$ and

$$
\varphi_{r}^{(5)}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \varphi_{s}^{(5)}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Find the orthogonal projectors P_{1}, P_{3} and P_{5} on the invariant subspaces corresponding to these irreducible representations.
(c) Obtain the vibration frequencies of the structure described by K and M, that is, the values of ω such that $\omega^{2} M u=K u$ for some nonvanishing vector u. Is the structure stable?

