Algebraic and Geometric Methods in Engineering and Physics

Homework 12

Due on December 20

1. Consider the operation

$$
(x, y) \cdot(z, w)=(y z+x, y w)
$$

defined on the open set

$$
H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\} .
$$

(a) Show that (H, \cdot) is a Lie group.
(b) Show that the derivative of the left translation map $L_{(x, y)}: H \rightarrow H$ at a given point $(z, w) \in H$ is represented by the matrix

$$
\left(d L_{(x, y)}\right)_{(z, w)}=\left(\begin{array}{ll}
y & 0 \\
0 & y
\end{array}\right)
$$

Conclude that the left-invariant vector field $X^{V} \in \mathfrak{X}(H)$ determined by the vector

$$
V=V^{1} \frac{\partial}{\partial x}+V^{2} \frac{\partial}{\partial y} \in \mathfrak{h} \equiv T_{(0,1)} H
$$

is given by

$$
X_{(x, y)}^{V}=y V^{1} \frac{\partial}{\partial x}+y V^{2} \frac{\partial}{\partial y}
$$

(c) Given $V, W \in \mathfrak{h}$, compute $[V, W]$.
(d) Determine the flow of the vector field X^{V}.

