Algebraic and Geometric Methods in Engineering and Physics

Homework 11

Due on December 13

1. Consider the subspace topology on the 2 -sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\},
$$

the open sets

$$
U_{N}=S^{2} \backslash\{(0,0,1)\} \quad \text { and } \quad U_{S}=S^{2} \backslash\{(0,0,-1)\},
$$

and the homeomorphisms $\varphi_{N}: U_{N} \rightarrow \mathbb{R}^{2}$ and $\varphi_{S}: U_{S} \rightarrow \mathbb{R}^{2}$ given by

$$
\varphi_{N}(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right) \quad \text { and } \quad \varphi_{S}(x, y, z)=\left(\frac{x}{1+z}, \frac{y}{1+z}\right) .
$$

Show that $\left\{\left(U_{N}, \varphi_{N}\right),\left(U_{S}, \varphi_{S}\right)\right\}$ is an atlas for S^{2} (which is therefore a 2-dimensional differentiable manifold).
2. Compute all possible Lie brackets of the vector fields $X, Y, Z \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ given by

$$
X=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}, \quad Y=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}, \quad Z=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

