
Algebraic and Geometric Methods
in Engineering and Physics

Homework 11

Due on December 13

1. Consider the subspace topology on the 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

the open sets

UN = S2 \ {(0, 0, 1)} and US = S2 \ {(0, 0,−1)},

and the homeomorphisms ϕN : UN → R2 and ϕS : US → R2 given by
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Show that {(UN , ϕN ), (US , ϕS)} is an atlas for S2 (which is therefore a 2-dimensional
differentiable manifold).

2. Compute all possible Lie brackets of the vector fields X,Y, Z ∈ X(R3) given by
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