Algebraic and Geometric Methods in Engineering and Physics

Homework 1

Due on September 20

1. Which of the following sets of matrices form groups under matrix multiplication? Provide either a short proof or a counter-example.
(a) $M_{2 \times 2}(\mathbb{Z})$;
(b) $\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det} A \neq 0\right\}$;
(c) $\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det} A=1\right\}$.
2. Given a group (G, \cdot), let us define the following relation: $x \sim y$ if and only if $y=g x g^{-1}$ for some $g \in G$.
(a) Prove that \sim is an equivalence relation.
(b) Compute the equivalence classes in the following two cases:
(i) $(G, \cdot)=(\mathbb{Z},+)$;
(ii) $(G, \cdot)=\left(S_{3}, \circ\right)$.
