Algebraic and Geometric Methods in Engineering and Physics
 2023/2024
 $1^{\text {st }}$ Exam - 18 January 2024-10:30
 Duration: 2 hours

(9/20) 1. Consider the finite group $G=\mathbb{Z}_{2} \times S_{3}$.
(a) Show that G is a nonabelian group of order 12
(b) Is this group isomorphic to the rotation group of the tetrahedron? Why or why not?
(c) Prove that $H=\mathbb{Z}_{2} \times\{e\}$ is a normal subgroup, and identify the quotient group G / H.
(d) Show that each irreducible representation of either \mathbb{Z}_{2} or S_{3} determines an irreducible representation of G. How many irreducible representations of G can one obtain in this way?
(e) List the conjugation classes of G.
(f) How many irreducible representations does G have? What are their dimensions?
(4/20) 2. Let $p>2$ be a prime number. If we use n colors, how many colorings are there of the vertices of a polygon with p sides, up to rotations of the polygon? Use your answer to prove that $n^{p}-n$ is a multiple of p (Fermat's Little Theorem).
(3/20) 3. Consider the cofinite topology in \mathbb{R}, that is, the topology whose closed sets are the finite sets (and \mathbb{R}).
(a) Show that any injective function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(b) Give an example of a disconnected set.
$(4 / 20)$ 4. Consider the Lie group

$$
S U(2)=\left\{S \in \mathcal{M}_{2 \times 2}(\mathbb{C}): S^{*} S=I \text { and } \operatorname{det}(S)=1\right\},
$$

whose Lie algebra is

$$
\begin{aligned}
\mathfrak{s u}(2) & =\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{C}): A^{*}=-A \text { and } \operatorname{tr}(A)=0\right\} \\
& =\left\{\left[\begin{array}{cc}
i z & x+i y \\
-x+i y & -i z
\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C}): x, y, z \in \mathbb{R}\right\} .
\end{aligned}
$$

Show that:
(a) $\mathfrak{s u}(2)$ is simple.
(b) $\varphi_{S}(A)=S A S^{-1}$ defines an action of $S U(2)$ on $\mathfrak{s u}(2)$.
(c) If we identify $\mathfrak{s u}(2)$ with \mathbb{R}^{3} by using the coordinates (x, y, z) then this action is a homomorphism $\varphi: S U(2) \rightarrow S O(3)$ with kernel $\{I,-I\}$.

