Algebraic and Geometric Methods in Engineering and Physics 2023/2024 1st Exam - 18 January 2024 - 10:30 Duration: 2 hours

- (9/20) **1.** Consider the finite group $G = \mathbb{Z}_2 \times S_3$.
 - (a) Show that G is a nonabelian group of order 12.
 - (b) Is this group isomorphic to the rotation group of the tetrahedron? Why or why not?
 - (c) Prove that $H = \mathbb{Z}_2 \times \{e\}$ is a normal subgroup, and identify the quotient group G/H.
 - (d) Show that each irreducible representation of either Z₂ or S₃ determines an irreducible representation of G. How many irreducible representations of G can one obtain in this way?
 - (e) List the conjugation classes of G.
 - (f) How many irreducible representations does G have? What are their dimensions?
- (4/20) **2.** Let p > 2 be a prime number. If we use n colors, how many colorings are there of the vertices of a polygon with p sides, up to rotations of the polygon? Use your answer to prove that $n^p n$ is a multiple of p (Fermat's Little Theorem).
- (3/20) 3. Consider the cofinite topology in ℝ, that is, the topology whose closed sets are the finite sets (and ℝ).
 - (a) Show that any injective function $f : \mathbb{R} \to \mathbb{R}$ is continuous.
 - (b) Give an example of a disconnected set.

(4/20) **4.** Consider the Lie group

$$SU(2) = \{ S \in \mathcal{M}_{2 \times 2}(\mathbb{C}) : S^*S = I \text{ and } \det(S) = 1 \},\$$

whose Lie algebra is

$$\mathfrak{su}(2) = \{A \in \mathcal{M}_{2 \times 2}(\mathbb{C}) : A^* = -A \text{ and } \operatorname{tr}(A) = 0\}$$
$$= \left\{ \begin{bmatrix} iz & x + iy \\ -x + iy & -iz \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{C}) : x, y, z \in \mathbb{R} \right\}.$$

Show that:

- (a) $\mathfrak{su}(2)$ is simple.
- (b) $\varphi_S(A) = SAS^{-1}$ defines an action of SU(2) on $\mathfrak{su}(2)$.
- (c) If we identify $\mathfrak{su}(2)$ with \mathbb{R}^3 by using the coordinates (x, y, z) then this action is a homomorphism $\varphi: SU(2) \to SO(3)$ with kernel $\{I, -I\}$.