Lie Groups and Lie Algebras

Homework 3

Due on October 14

1. Factorize the matrix

$$
g=\left(\begin{array}{cccc}
6 & 1 & 3 & -2 \\
4 & 2 & 1 & 1 \\
2 & 1 & 2 & 2 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

as a product $g=n \pi b$, where n is an upper triangular matrix with 1 's on the diagonal, π is a permutation matrix and b is upper triangular.
2. (a) Show that

$$
T=\{\cos \theta+i \sin \theta \mid \theta \in \mathbb{R}\}
$$

is a maximal torus of

$$
S U(2)=\left\{a+b i+c j+d k \in \mathbb{H} \mid a^{2}+b^{2}+c^{2}+d^{2}=1\right\} .
$$

(b) Show that the set of matrices of the form

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is a maximal torus of $S O(3)$.
(c) Show that the set of matrices of the form

$$
\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & \cos \varphi & -\sin \varphi \\
0 & 0 & \sin \varphi & \cos \varphi
\end{array}\right)
$$

is a maximal torus of $S O(4)$.
3. Let G be a Lie group. Show that the following are Lie groups:
(a) The connected component of the identity G_{0}.
(b) The center of G,

$$
Z(G)=\{z \in G \mid z g=g z \text { for all } g \in G\}
$$

(c) The kernel of any Lie group homomorphism $f: G \rightarrow H$.

