Differential Geometry of Curves and Surfaces

Homework 5

Due on October 18

1. Consider the following differential forms:

$$\alpha = xdx + ydy \in \Omega^{1}(\mathbb{R}^{2});$$

$$\beta = -\frac{y}{x^{2} + y^{2}}dx + \frac{x}{x^{2} + y^{2}}dy \in \Omega^{1}(\mathbb{R}^{2} \setminus \{\mathbf{0}\});$$

$$\omega = e^{xz}dx + x\cos zdy + y^{2}dz \in \Omega^{1}(\mathbb{R}^{3});$$

$$\eta = xdx \wedge dy - zdx \wedge dz + xyzdy \wedge dz \in \Omega^{2}(\mathbb{R}^{3}).$$

Consider also the following smooth functions:

 $\mathbf{f}: \mathbb{R} \to \mathbb{R}^2$ defined as $\mathbf{f}(t) = (t, t^2)$;

 $\mathbf{g}:(0,+\infty)\times(0,2\pi)\to\mathbb{R}^2$ defined as $\mathbf{g}(r,\theta)=(r\cos\theta,r\sin\theta)$;

 $\mathbf{h}: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $\mathbf{h}(u, v, w) = (uv, vw, uw)$.

Compute:

- (a) $\alpha \wedge \beta$, $\omega \wedge \eta$, $\eta \wedge \eta$;
- (b) $d\alpha, d\beta, d\omega, d\eta$;
- (c) $\mathbf{f}^* \alpha, \mathbf{g}^* \alpha, \mathbf{g}^* \beta, \mathbf{h}^* \eta$.

2. Recall that for any $\mathbf{v} \in \mathbb{R}^3$ we define

$$\omega_{\mathbf{v}} = v^1 dx + v^2 dy + v^3 dz$$

and

$$\Omega_{\mathbf{v}} = v^1 dy \wedge dz + v^2 dz \wedge dx + v^3 dx \wedge dy.$$

Show that if $\phi: \mathbb{R}^3 \to \mathbb{R}$ is a scalar field and $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field then:

- (a) $d\phi = \omega_{\operatorname{grad}\phi}$;
- (b) $d\omega_{\mathbf{F}} = \Omega_{\text{curl }\mathbf{F}};$
- (c) $d\Omega_{\mathbf{F}} = (\operatorname{div} \mathbf{F}) dx \wedge dy \wedge dz$;
- (d) $d(d\phi) = 0 \Leftrightarrow \operatorname{curl}(\operatorname{grad} \phi) = \mathbf{0};$
- (e) $d(d\omega_{\mathbf{F}}) = 0 \Leftrightarrow \operatorname{div}(\operatorname{curl} \mathbf{F}) = 0.$