Differential Geometry of Curves and Surfaces

Homework 11

Due on December 13

1. Recall that the hyperbolic plane is the open domain H = {(z,y) € R? : y > 0} with the
Riemannian metric

1
ds® = ? (de + dy2) .
Show that:

(a) The geodesic equations can be written as
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are constant along any geodesic.

(c) When p = 0 the geodesic is given by

(2(8),y(8) = (zo0,y0e=") .

where o € R and gy > 0 are constants.

(d) When p # 0 the image of the geodesic is contained in the circle
(pz —q)* +p’y* = E

(with center in the z-axis).
(e) The vector field
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is parallel along the geodesic

(x(t), y(1)) = (0.¢")



