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Preconditioning for Radial Basis Functions with Domain
Decomposition Methods

Leevan Ling(1) andEdward J. Kansa(2)

Abstract: Over the last decade or so, researchers have investigated the use of RBFs in
the numerical solutions of ordinary (ODEs) and partial differential equations (PDEs).
In general, when using RBFs to solve PDEs, the resulting matrices are full and severely
ill-conditioned. Therefore, applications of RBF-PDE were once restricted to problems of
moderate size solved with direct methods. We address this problem with a preconditioning
technique based on approximate cardinal basis functions (ACBFs). We then couple the
ACBF preconditioning technique with the domain decomposition method (DDM) which
allows one to solve large-scale PDE problems in parallel.

Keywords: Radial basis function, Domain decomposition, Approximate cardinal basis
function, Preconditioner, Partial different equation.

1 Background

A major class of preconditioners for the RBF interpolation problem is the null space
method, see [1, 2]. Such a method relies on the fact that most popular RBFs are strictly
conditionally positive definite of orderm (SCPDm).The resulting preconditioners are of
size(N−m)-by-(N−m). The preconditioned systems are positive definite and are com-
monly solved by the conjugate gradient method. Bozzini, Lenarduzzi, and Schaback [3]
use increasing annihilation orders of B-splines to improve the decay rates thereby im-
proving the convergence rates of multiquadrics and polyharmonic splines. However, this
class of preconditioner cannot be extended to the application of PDEs since the resulting
RBF-PDE coefficient matrix does not enjoy the SCPD property.

Another important preconditioning technique is the approximate cardinal basis func-
tion (ACBF) approach. In this approach, the preconditioner has the same dimension as the
original matrix. At a pointxi , an ACBF is merely a linear combination of the neighboring
RBFs. Beatson et al. [4] lower the computational cost of solving the RBF interpolation
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problem toO(N logN) operations. Faul improved the efficiency by combining the above
ideas with Jacobi iteration and avoiding the unnecessary evaluation of residuals, see [5, 6].
Interested readers can find more studies of cardinal functions of MQ by Buhmann and
Micchelli [7], and Baxter [8].

Consider a PDE of the form,

Lu = f (x) in Ω⊂ IRd,
Bu = g(x) on ∂Ω,

(1)

The unknown PDE solutionu is approximated by RBFs,

u =
N

∑
k=1

αkφ(x−xk). (2)

To solve for theN unknown coefficientsα = [α1, . . . ,αN]T , N linearly independent equa-
tions are needed. These equations can be obtained by choosingN distinct collocation
pointsX = {x1, . . . ,xN} on bothΩ \ ∂Ω and∂Ω. We assume the points (centers) are ar-
ranged in such a way that the firstNI points and the lastNB points are inΩ \ ∂Ω and
∂Ω, respectively. The centersxk used in (2) are often chosen as collocation points. Other
strategies of choosingX were studied by Fornberg et al. [9]. Ensuring thatU(x) satis-
fies (1) at the collocation points results in a good approximation of the solutionu. The
equations are

N

∑
k=1

αkLφ(xi−xk) = f (xi) for xi ⊂ X∩ (Ω\∂Ω),

N

∑
k=1

αkBφ(xi−xk) = g(xi) for xi ⊂ X∩∂Ω.

(3)

Rewriting (3) in matrix form, we have

Aα = b, whereA =
[

AL
AB

]
, b =

[
f (xi)
g(xi)

]
, (4)

and

(AL)ik = Lφ(xi−xk), xi ⊂ (Ω\∂Ω), xk ∈ X,
(AB)ik = Bφ(xi−xk), xi ⊂ ∂Ω, xk ∈ X.

(5)

This method is often named the asymmetric collocation method. The symmetric collo-
cation approach can be found in [10]. The matrix given by (4) and (5) is generally non-
symmetric and full; this system of equations is known to be very ill-conditioned whenN
or c becomes large.

We present a new preconditioner designed to work on the asymmetric collocation
method for various RBF-PDE applications. This preconditioner is sufficiently general
that it may be applied to elliptic, hyperbolic or parabolic PDEs in which RBFs are used as
the spatial approximation scheme. Furthermore, the preconditioning technique is coupled
with the domain decomposition method.
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2 Our results

We have developed an effective preconditioner scheme for the asymmetric collocation
scheme in which radial basis functions (RBFs) are used to solve partial differential equa-
tions (PDEs) problems. This method works well for elliptic, hyperbolic and parabolic
PDEs and for the volume integral PDE formulation [11].

An ideal approximate cardinal basis function (ACBF) is equivalent to a delta function
δ(xi) that is one at it centerxi and zero everywhere else. We start from the coefficient
matrix A that is constructed from the PDE boundary condition and interior operators act-
ing upon the RBFs. For each centerxi , we select a set containing special points and local
neighboring centers of sizem� N. The inclusion of special points in this subset that
ensures each ACBF is more distinct in shape.

We find the set of weightswi at each center by solving each least-squares problem to
construct the global preconditionerW. The set of least-squares problems is solved using
either a local normal equation approach (L-NE), a local QR factorization (L-QR), or a
local singular value decomposition (L-SVD) method.

The preconditionerW is constructed from the sets of weightswi that transforms the
elements of the RBF-PDE coefficient matrixA into ACBFs. The preconditionerW that
acts as an approximation toA−1 clusters the real part of the complex eigenvalues ofWA
about 1 permitting the solution of the RBF expansion coefficients to be solved by the very
efficient GMRES iteration scheme. With the set of expansion coefficients determined, we
reconstruct the numerical solutionu over the domain of interest.

Our intent is to be able to obtain max and mean root square errors with our precondi-
tioning scheme that are less than or equal to the same errors obtained by global Gaussian
elimination, but requiring far fewer flops. In its present form, our preconditioner rep-
resents a major breakthrough in the computational efficiency of the RBF-PDE method.
However, we make the caveat that this computational efficiency holds as long as safe val-
ues of the shape parameter are used to prevent severe ill-conditioning in both the global
RBF-PDE coefficient matrixA and the normal equation matrices that are used to construct
the preconditionerW.

The numerical solutions obtained from GMRES iteration on an elliptic PDE test prob-
lem found in [12] are reported. We tested the ACBF method for various size problems
and values of the MQ shape parameterc(N) for regularly spaced and scattered center
distributions. We found that the shape parameter plays a very important role.

The other attractive possibility of using larger values ofc and/orN is to combine
our preconditioner with the domain decomposition method (DDM), [14, 15, 16, 17, 18].
DDM splitsΩ into K overlapping or nonoverlapping subdomains, each of which contains
Nk�N centers. The smaller dimension coefficient matrices are orders of magnitude bet-
ter conditioned than the corresponding global coefficient matrix. Smith, Bjørstad, and
Gropp [?] present a nice overview of the techniques used for overlapping and nonover-
lapping methods that are applicable in the efficient solution methods for PDE problems
on parallel machines that are readily transferable to RBF-PDE methods.

With DDM, both the original and preconditioned systems on the subdomains are better
conditioned when we are dealing withNk < N centers instead ofN centers. Furthermore,
combining our preconditioning technique with DDM will permit the use of a larger shape
parameter by increasing them/N ratio on each subdomain keeping the number of flops
within an economical limit.
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We acknowledge that our preconditioning scheme requires more development, but it
still performs very efficiently with the caveat that we restrict the condition number of
global coefficient matrixA by using safe values ofc∼ hmin. Then the GMRES iteration
scheme converges within tens of iterations. The current preconditioner is two to three
orders more efficient than global Gaussian elimination methods, and GMRES isN times
more efficient than G-GE asN increases.

For cases where the condition number ofA is about 1010 to 1013 and 1089≤ N ≤
1681, our preconditioning scheme only requires approximately 25% of the flops of the
G-GE method. For highly ill-conditioned problems, the preconditioned GRMES is able
to converge forA having a condition number as high as 1015, but GMRES now requires
about 80% of the number of flops compared to G-GE.

In the next investigation, we will combine overlapping domain decomposition meth-
ods (DDM) with the least-squares ACBF method. We obtained considerable efficiency in
our scheme by using the fast matrix-vector multiplication scheme of [4, 19]. However, we
intend to obtain even better efficiencies when we implement the fast multipole expansion
method of Beatson and Newsam[20] and combine our ACBF with domain decomposition
similar to work of Beatson, Light, and Billings [14]. Another promising approach would
be to combine the ideas presented by Bozzini et al. [3]; by constraining the ACBFs to
have higher order vanishing moments, the ACBFs decay very rapidly obviating the need
to include the majority of the column elements ofA. Such a combination is especially
attractive for large-scale problems of engineering interest for the following reasons:

• No labor intensive mesh generation is required.

• The RBF-PDE collocation method is very simple to implement.

• The rate of convergence of MQ-RBF methods is exponential compared to the linear
or quadratic convergence rates of the traditional methods.

• We will optimize the flop rates for the GMRES method using similar fast methods
as Beatson and co-workers.

• As the number of subdomain increase, the partitioned matrixAk associated with
each subdomain becomes better conditioned, permitting largerc values with the
accompanying faster convergence and coarser discretization requirements.

• With the work load distributed among many processors, the turn-around time to
finish a run diminishes, permitting a larger number of parametric studies to be com-
pleted.

This DDM-ACBF approach can be very relevant when combined with Fornberg’s
method. We intend to provide persons who are interested in using asymmetric RBF-PDE
methods various options to solve their problems. It is hoped that our work will dispel the
perception that only finite difference, element, and volume methods are computationally
efficient methods to solve PDE problems in view of their slow convergence rates.
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