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Historical Background

Beginning of Character Sheaves
1 Lusztig, George Character sheaves. I. Adv. in Math. 56 (1985), no. 3,

193–237.
2 Lusztig, George Character sheaves. II. Adv. in Math. 57 (1985), no.

3, 226–265.
3 Lusztig, George Character sheaves. III. Adv. in Math. 57 (1985), no.

3, 266–315.
4 Lusztig, George Character sheaves. IV. Adv. in Math. 59 (1986), no.

1, 1–63.
5 Lusztig, George Character sheaves. V. Adv. in Math. 61 (1986), no.

2, 103–155.
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Historical Background

Lusztig Conjecture (2006)

There exists a theory of character sheaves for Unipotent Groups.

Drinfeld and Boyarchenko Conjecture (2010)

For a unipotent group G there exists a collection CS(G ) of complexes of
sheaves on G such that:
(a) The isomorphism classes in CS(G ) are invariant under all

automorphisms of G .
(b) The complexes in CS(G ) are irreducible perverse sheaves.
(c) The trace functions of the complexes in CS(G ) are exactly the

irreducible characters of G (Fq).
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Historical Background

Luzstig Proved that (1985 and 2006)
1 When G = GLn there exists that collection CS(G ).
2 For some reductive groups it doesn’t exist.
3 For some connected unipotent group it also doesn’t exist.

Drinfeld and Boyarchenko Weaker Conjecture (2010)

For a unipotent group G exists a collection CS(G ) of complexes of sheaves
on G such that:
(a) The isomorphism classes in CS(G ) are invariant under all

automorphisms of G .
(b) The complexes in CS(G ) are irreducible perverse sheaves.
(c) The trace functions of the complexes in CS(G ) form a basis for the

space of class functions of G (Fq).
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Historical Background

Lusztig (1985) and Drinfeld & Boyarchenko proved (2010)

The weaker conjecture holds in the following cases
1 Connected reductive groups.
2 Unipotent groups of nilpotence class lower than p.
3 Connected commutative groups.

Drinfeld and Boyarchenko Conjecture (2010)

The weaker conjecture holds for all unipotent groups.
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Historical Background

Classical Finite Groups Result
Given a finite group G , there exists a bijection between the central minimal
idempotents of the group algebra and the irreducible characters of G.

Character Sheaves (2010)

Let e be a minimal closed idempotent in DG (G ), a Character Sheaf L
(associated to e) is a perverse indecomposable sheaf such that e ∗ L ' L.
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Monoidal Categories

Monoidal Categories
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Monoidal Categories

Semigroupal Category

A semigroupal category is a triple (M,⊗, α) such thatM is a category
and

1 ⊗ is a bifunctor ⊗ :M×M→M,
2 α is a functorial collection of isomorphisms:

αX ,Y ,Z : (X ⊗ Y )⊗ Z '−→ X ⊗ (Y ⊗ Z )

Monoidal Category
1 An object E on a semigroupal categoryM is unital if the functors:

X 7→ X ⊗ E and X 7→ e ⊗ X are isomorphic to the identity functor.
2 If a semigroupal category has an unital object then it’s called

monoidal.
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Monoidal Categories

Idempotents
LetM be a monoidal category.

1 An object e ∈M is a weak idempotent if e ⊗ e ' e.
2 A morphism 1

π→ e with e ∈M is an idempotent arrow if after
tensoring with e it becomes an isomorphism.

3 An object e ∈M is a closed idempotent if there exists an idempotent
arrow 1 π→ e.

Hecke Category
LetM be a monoidal category, and e ∈M a weak idempotent we can
define the following subcategories:

1 eM = {X ∈M | e ⊗ X ' X}.
2 Me = {X ∈M | X ⊗ e ' X}.
3 eMe = {X ∈M | e ⊗ X ⊗ e ' X}.
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Monoidal Categories

Lemma
Let e be a weak idempotent in a monoidal categoryM, then the Hecke
subcategory is a semigroupal category. If e is closed idempotent then the
Hecke subcategory is a monoidal category with e as unital object.

Braided Categories
A braided monoidal category is a monoidal category with a commutative
constrain: γX ,Y : X ⊗ Y '−→ Y ⊗ X .

Minimal Idempotents
LetM a braided monoidal category with a zero object. Then an object
e ∈M is a minimal closed (respectively weak) idempotent if e 6= 0, and
for all closed (respectively weak) idempotent e ′ we have either e ⊗ e ′ = 0
or e ⊗ e ′ ' e.
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The DG (G) category

DG(G ) category
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The DG (G) category

Notation
From now on G will always denote an unipotent group (a closed subgroup
of the unitriangular matrices).

The Category D(G )

We shall denote D(G ) the derived category of constructible complexes of
Q`−sheaves on G .

The Equivariant Category DG (G )

We define the equivariant derived category DG (G ) as a colection of objects
M ∈ D(G ), such that α∗M '−→ π∗M.
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The DG (G) category

Functors in the Equivariant Derived Category
For any morphism f : X → Y , G−invariant we can consider the functors:

1 f ∗ : DG (X )→ DG (Y )

2 f! : DG (Y )→ DG (X ).

Monoidal structure in DG (G )

Consider the bifunctor ∗ : DG (G )×DG (G )→ DG (G ), defined by
M ∗ N = µ!(M � N), and the unit object 1 = 1!(Q`).

Braided structure in DG (G )

The triple (DG (G ), ∗,1) is a monoidal braided category.
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The DG (G) category

Character Sheaves

Let e be a minimal closed idempotent in DG (G ), and considerMperv
e the

subcategory of the Hecke subcategory eDG (G ), such that the complex is a
perverse sheaf on G .

The Lusztig packet of character sheaves defined by e is the set of
indecomposable objects inMperv

e , and we call an object in a Lusztig packet
a Character Sheaf.

We define ne as the integer (if exists) such that e[−ne ] is perverse.
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Characters vs Sheaves
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Characters vs Sheaves

Induction On Finite Groups

Define the action:

α : (G × H)× H →G × H

((g, h), h′) 7→(gh′,Ch′ (h)).

Define the inclusion and projection:

H
i
↪→G̃ π→ G

h 7→(1, h)

(g, h) 7→ Cg (h)

i∗ : Fun(G̃)G
'−→ Fun(H)H

indG
H = π! ◦ (i∗)−1.

Induction Of Sheaves(Boyarchenko 2010)

Define the action:

α : (G × H)× H →G × H

((g, h), h′) 7→(gh′,Ch′ (h)).

Define the inclusion and projection:

H
i
↪→G̃ π→ G

h 7→(1, h)

(g, h) 7→ Cg (h)

i∗ : DG (G̃)
'−→ DG′ (G

′)

indG
H = π! ◦ (i∗)−1.
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Characters vs Sheaves

Mackey Irreducibility criterion

If χ ∈ Irr(H) so indG
H χ is irreducible if and only

if χ ∗ δx ∗ χ = 0 for all x ∈ G\H.

Admissible Pair for finite groups

Consider (H, χ) with χ ∈ Hom(H,C). Let G ′

be the stabilizer of the pair (H, χ) then the pair
is admissible if:

(a) G ′/H is commutative.

(b) The map:

Bχ : G ′/H × G ′/H → C×

(g1, g2) 7→ χ(Cg1 (g2)g
−1
2 )

induces G ′/H '→ Hom(G ′/H,C×).

(c) For all g ∈ G\G ′ we have that
χ|H∩Hg 6= χ

g
|H∩Hg .

Geometric Mackey Irreducibility criterion

Given a M ∈ D(G ′) we say that it satisfies the
Geometric Mackey Condition (with respect to
G), if for all x ∈ G(k)\G ′(k) we have
M ∗ δx ∗M = 0.

Admissible Pair

Consider (H,L) where L is a multiplicative
local system on H such that:

(a) Let G ′ be the stabilizer of the pair
(H,L) and consider its neutral
connected component G ′0. Then
G ′0/H is commutative.

(b) The morphism
ϕL : G ′0/H → (G ′0/H)∗ is an isogeny.

(c) For all g ∈ G(k)\G ′(k) we have:
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g
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Then we call the pair (H,L) an admissible pair.
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Main Results

Proposition (Drinfeld and Boyarchenko 2010)

Let G be a finite nilpotent group, then every irreducible character of G is
induced from some linear character of some admissible pair.

Heisenberg minimal idempotent

Consider (H,L) an admissible pair, and let G ′ be its stabilizer. Let
eL = L ⊗ (KH) and denote by e ′L its extension by zero to G ′.

We call e ′L the Heisenberg minimal idempotent on G ′ defined by the pair
(H,L).

Lemma (Boyarchenko 2010)

The object e ′L ∈ DG ′(G ′) is a closed idempotent, a minimal weak
idempotent (so it’s a minimal closed idempotent), and satisfies the
Geometric Mackey Condition .
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Main Results

Lemma (Boyarchenko and Drinfeld 2011)

If M,N ∈ DG ′(G ′) satisfies the Geometric Mackey Condition then
indG

G ′(M) ∗ indG
G ′(N)

'−→ indG
G ′(M ∗ N)

If e ∈ DG ′(G ′) be a weak idempotent that satisfy the Geometric
Mackey Condition then for all M,N ∈ eDG ′(G ′) we have
M ∗ δx ∗ N = 0 for all x ∈ G (k)\G ′(k).

Lemma (Boyarchenko 2010)

Let e ∈ DG ′(G ′) be a weak idempotent that satisfy Geometric Mackey
Condition . Then:

If M ∈ eDG ′(G ′) then indG
G ′(M) ∈ fDG (G ) (where f = indG

G ′e).
If e and f are closed idempotents then (indG

G ′)|eDG ′ (G ′) is an
equivalence of eDG ′(G ′) and fDG (G ).
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Main Results

Corollary (Boyarchenko and Drinfeld 2011)

Let e ∈ DG ′(G ′) be a closed idempotent that satisfy Geometric Mackey
Condition and such that f = indG

G ′e is closed. Then:
eDG ′(G ′) and fDG (G ) are monoidal categories.
We have an monoidal equivalence:

(indG
G ′)|eDG ′ (G ′) : eDG ′(G ′)→ fDG (G ).
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Main Results

Lemma (Boyarchenko 2010)

Let e ∈ DG ′(G ′) be a weak idempotent that satisfy the Geometric Mackey
Condition . Then the object f = indG

G ′e ∈ DG (G ) is a weak idempotent,
and if e is minimal f is minimal as well.

Proposition (Boyarchenko and Drinfeld 2011)

If e ∈ DG (G ) is a closed minimal idempotent then it’s a weak minimal
idempotent.
If e ∈ DG (G ) is a weak minimal idempotent then e it’s closed.
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Main Results

Theorem (Boyarchenko and Drinfeld 2011)

Let e ∈ DG ′(G ′) be a closed minimal idempotent such that satisfy the
Geometric Mackey Condition and let f = indG

G ′e . Then:
f is a closed minimal idempotent in DG (G ).
The functor indG

G ′ restricts to a monoidal equivalence
eDG ′(G ′)→ fDG (G ).
If M ∈ eDG ′(G ′) is perverse then indG

G ′(M)[dim(G/G ′)] is perverse as
well.
nf = ne − dim(G/G ′).
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Main Results

Proposition (Boyarchenko and Drinfeld 2011)

For all N ∈ D(G ), non zero, There exists a minimal closed idempotent
f ∈ DG (G ) such that N ∗ f 6= 0, with f induced from some Heisenberg
idempotent.

Theorem (Boyarchenko and Drinfeld 2011)

If e ′L ∈ DG ′(G ′) is an Heisenberg idempotent for some admissible pair
(H,L) then:

f = indG
G ′e
′
L is a minimal closed idempotent.

ne′L
= dim(H) and nf = dim(H)− dim(G/G ′).

Every f ∈ DG (G ) minimal closed idempotent comes from an
admissible pair.
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Main Results

Theorem (Deshpande 2010 and Datta 2010)

If e ′L ∈ DG ′(G ′) is an Heisenberg idempotent then:
Mperv

e′L
is an abelian category semisimple with a finite number of

simple objects.
There exists an unique integer ne′L

such that e ′L[−ne′L
] ∈Mperv

e′L
(Moreover we have 0 ≤ ne′L

≤ dim(G )). AndMe′L
:=Mperv

e′L
[ne′L

] is
monoidal.

Theorem (Boyarchenko and Drinfeld 2011)

If e ∈ DG (G ) is a closed minimal idempotent. Then:
Mperv

e is an abelian category semisimple with a finite number of
simple objects.
There exists an unique integer ne such that e[−ne ] ∈Mperv

e
(Moreover we have 0 ≤ ne ≤ dim(G )). AndMe :=Mperv

e [ne ] is
monoidal.
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