Supercharacters of algebraic groups: the geometric approach.

João Dias

Universidade de Lisboa

LisMath Seminar

29/05/2015

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 1 / 29

3

イロト イヨト イヨト イヨト

- 2 Monoidal Categories
- 3 The $\mathcal{D}_G(G)$ category
- 4 Characters vs Sheaves

João Dias (FCUL)

5 Main Results

æ

イロン 不聞と 不同と 不同と

Historical Background

Historical Background

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 3 / 29

イロト イポト イヨト イヨト

Beginning of Character Sheaves

- Lusztig, George Character sheaves. I. Adv. in Math. 56 (1985), no. 3, 193–237.
- Lusztig, George Character sheaves. II. Adv. in Math. 57 (1985), no. 3, 226–265.
- Lusztig, George Character sheaves. III. Adv. in Math. 57 (1985), no. 3, 266–315.
- Lusztig, George Character sheaves. IV. Adv. in Math. 59 (1986), no. 1, 1–63.
- Lusztig, George Character sheaves. V. Adv. in Math. 61 (1986), no. 2, 103–155.

4/29

イロト 不得下 イヨト イヨト 二日

Lusztig Conjecture (2006)

There exists a theory of character sheaves for Unipotent Groups.

イロト イポト イヨト イヨト

Lusztig Conjecture (2006)

There exists a theory of character sheaves for Unipotent Groups.

Drinfeld and Boyarchenko Conjecture (2010)

For a unipotent group G there exists a collection CS(G) of complexes of sheaves on G such that:

- (a) The isomorphism classes in CS(G) are invariant under all automorphisms of G.
- (b) The complexes in CS(G) are irreducible perverse sheaves.
- (c) The trace functions of the complexes in CS(G) are exactly the irreducible characters of $G(\mathbb{F}_q)$.

Luzstig Proved that (1985 and 2006)

- When $G = GL_n$ there exists that collection CS(G).
- Por some reductive groups it doesn't exist.
- Sor some connected unipotent group it also doesn't exist.

イロト イポト イヨト イヨト

Luzstig Proved that (1985 and 2006)

- When $G = GL_n$ there exists that collection CS(G).
- Por some reductive groups it doesn't exist.
- Sor some connected unipotent group it also doesn't exist.

Drinfeld and Boyarchenko Weaker Conjecture (2010)

For a unipotent group G exists a collection CS(G) of complexes of sheaves on G such that:

- (a) The isomorphism classes in CS(G) are invariant under all automorphisms of G.
- (b) The complexes in CS(G) are irreducible perverse sheaves.
- (c) The trace functions of the complexes in CS(G) form a basis for the space of class functions of $G(\mathbb{F}_q)$.

イロト 不得下 イヨト イヨト 二日

Lusztig (1985) and Drinfeld & Boyarchenko proved (2010)

The weaker conjecture holds in the following cases

- Connected reductive groups.
- ② Unipotent groups of nilpotence class lower than *p*.
- Onnected commutative groups.

Lusztig (1985) and Drinfeld & Boyarchenko proved (2010)

The weaker conjecture holds in the following cases

- Connected reductive groups.
- Onipotent groups of nilpotence class lower than p.
- Onnected commutative groups.

Drinfeld and Boyarchenko Conjecture (2010)

The weaker conjecture holds for all unipotent groups.

Classical Finite Groups Result

Given a finite group G, there exists a bijection between the central minimal idempotents of the group algebra and the irreducible characters of G.

3

イロト イポト イヨト イヨト

Classical Finite Groups Result

Given a finite group G, there exists a bijection between the central minimal idempotents of the group algebra and the irreducible characters of G.

Character Sheaves (2010)

Let e be a minimal closed idempotent in $\mathcal{D}_G(G)$, a Character Sheaf \mathcal{L} (associated to e) is a perverse indecomposable sheaf such that $e * \mathcal{L} \simeq \mathcal{L}$.

Monoidal Categories

Monoidal Categories

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 9 / 29

イロト イポト イヨト イヨト

Semigroupal Category

A semigroupal category is a triple $(\mathcal{M},\otimes,\alpha)$ such that $\mathcal M$ is a category and

 $\textcircled{0} \otimes \text{ is a bifunctor } \otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M},$

2 α is a functorial collection of isomorphisms:

$$\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \stackrel{\simeq}{\longrightarrow} X \otimes (Y \otimes Z)$$

< 回 ト く ヨ ト く ヨ ト

Semigroupal Category

A semigroupal category is a triple $(\mathcal{M},\otimes,\alpha)$ such that \mathcal{M} is a category and

2 α is a functorial collection of isomorphisms:

$$\alpha_{X,Y,Z}: (X\otimes Y)\otimes Z \stackrel{\simeq}{\longrightarrow} X\otimes (Y\otimes Z)$$

Monoidal Category

- An object E on a semigroupal category M is unital if the functors: X → X ⊗ E and X → e ⊗ X are isomorphic to the identity functor.
- If a semigroupal category has an unital object then it's called monoidal.

Idempotents

Let \mathcal{M} be a monoidal category.

- **(**) An object $e \in \mathcal{M}$ is a *weak idempotent* if $e \otimes e \simeq e$.
- ② A morphism 1 → e with e ∈ M is an idempotent arrow if after tensoring with e it becomes an isomorphism.
- Solution An object e ∈ M is a closed idempotent if there exists an idempotent arrow 1 ^π→ e.

・ 何 ト ・ ヨ ト ・ ヨ ト

Idempotents

Let \mathcal{M} be a monoidal category.

- **(**) An object $e \in \mathcal{M}$ is a *weak idempotent* if $e \otimes e \simeq e$.
- ② A morphism 1 → e with e ∈ M is an idempotent arrow if after tensoring with e it becomes an isomorphism.
- Solution An object e ∈ M is a closed idempotent if there exists an idempotent arrow 1 ^π→ e.

Hecke Category

Let \mathcal{M} be a monoidal category, and $e \in \mathcal{M}$ a weak idempotent we can define the following subcategories:

Lemma

Let *e* be a weak idempotent in a monoidal category \mathcal{M} , then the Hecke subcategory is a semigroupal category. If *e* is closed idempotent then the Hecke subcategory is a monoidal category with *e* as unital object.

э.

(1月) (1日) (1日)

Lemma

Let *e* be a weak idempotent in a monoidal category \mathcal{M} , then the Hecke subcategory is a semigroupal category. If *e* is closed idempotent then the Hecke subcategory is a monoidal category with *e* as unital object.

Braided Categories

A braided monoidal category is a monoidal category with a commutative constrain: $\gamma_{X,Y} : X \otimes Y \xrightarrow{\simeq} Y \otimes X$.

Lemma

Let *e* be a weak idempotent in a monoidal category \mathcal{M} , then the Hecke subcategory is a semigroupal category. If *e* is closed idempotent then the Hecke subcategory is a monoidal category with *e* as unital object.

Braided Categories

A braided monoidal category is a monoidal category with a commutative constrain: $\gamma_{X,Y} : X \otimes Y \xrightarrow{\simeq} Y \otimes X$.

Minimal Idempotents

Let \mathcal{M} a braided monoidal category with a zero object. Then an object $e \in \mathcal{M}$ is a *minimal closed* (respectively weak) idempotent if $e \neq 0$, and for all closed (respectively weak) idempotent e' we have either $e \otimes e' = 0$ or $e \otimes e' \simeq e$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The $\mathcal{D}_{\boldsymbol{G}}(\boldsymbol{G})$ category

$\mathcal{D}_G(G)$ category

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 13 / 29

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ─ ヨ ─ の々で

Notation

From now on G will always denote an unipotent group (a closed subgroup of the unitriangular matrices).

æ 👘

《曰》 《圖》 《臣》 《臣》

Notation

From now on G will always denote an unipotent group (a closed subgroup of the unitriangular matrices).

The Category $\mathcal{D}(G)$

We shall denote $\mathcal{D}(G)$ the *derived category* of constructible complexes of $\overline{\mathbb{Q}}_{\ell}$ -sheaves on G.

Notation

From now on G will always denote an unipotent group (a closed subgroup of the unitriangular matrices).

The Category $\mathcal{D}(G)$

We shall denote $\mathcal{D}(G)$ the *derived category* of constructible complexes of $\overline{\mathbb{Q}}_{\ell}$ -sheaves on G.

The Equivariant Category $\mathcal{D}_G(G)$

We define the *equivariant derived category* $\mathcal{D}_G(G)$ as a colection of objects $M \in \mathcal{D}(G)$, such that $\alpha^*M \xrightarrow{\simeq} \pi^*M$.

<□ > < 母 > < 臣 > < 臣 > ○ € ○ 14/29

Functors in the Equivariant Derived Category

For any morphism $f : X \rightarrow Y$, *G*-invariant we can consider the functors:

<□ > < 母 > < 臣 > < 臣 > ○ € の ○ 15/29

Functors in the Equivariant Derived Category

For any morphism $f : X \rightarrow Y$, *G*-invariant we can consider the functors:

$$I f^* : \mathcal{D}_G(X) \to \mathcal{D}_G(Y)$$

Monoidal structure in $\mathcal{D}_G(G)$

Consider the bifunctor $* : \mathcal{D}_G(G) \times \mathcal{D}_G(G) \to \mathcal{D}_G(G)$, defined by $M * N = \mu_!(M \boxtimes N)$, and the unit object $\mathbb{1} = \mathbb{1}_!(\overline{\mathbb{Q}}_\ell)$.

<□ > < 母 > < 臣 > < 臣 > ○ € の ○ 15/29

Functors in the Equivariant Derived Category

For any morphism $f : X \rightarrow Y$, *G*-invariant we can consider the functors:

$$f^*: \mathcal{D}_G(X) \to \mathcal{D}_G(Y)$$

Monoidal structure in $\mathcal{D}_G(G)$

Consider the bifunctor $* : \mathcal{D}_G(G) \times \mathcal{D}_G(G) \to \mathcal{D}_G(G)$, defined by $M * N = \mu_!(M \boxtimes N)$, and the unit object $\mathbb{1} = \mathbb{1}_!(\overline{\mathbb{Q}}_\ell)$.

Braided structure in $\mathcal{D}_G(G)$

The triple $(\mathcal{D}_{\mathcal{G}}(\mathcal{G}), *, \mathbb{1})$ is a monoidal braided category.

<□ > < 母 > < 臣 > < 臣 > ○ € の ○ 15/29

Character Sheaves

Let *e* be a minimal closed idempotent in $\mathcal{D}_G(G)$, and consider \mathcal{M}_e^{perv} the subcategory of the Hecke subcategory $e\mathcal{D}_G(G)$, such that the complex is a perverse sheaf on *G*.

The Lusztig packet of character sheaves defined by e is the set of indecomposable objects in \mathcal{M}_e^{perv} , and we call an object in a Lusztig packet a Character Sheaf.

We define n_e as the integer (if exists) such that $e[-n_e]$ is perverse.

Characters vs Sheaves

Characters vs Sheaves

João Dias (FCUL)

Characters of algebraic groups

・ロト ・四ト ・ヨト ・ヨト

29/05/2015 17 / 29

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G}\times\boldsymbol{H})\times\boldsymbol{H} \to \boldsymbol{G}\times\boldsymbol{H} \\ ((\boldsymbol{g},\boldsymbol{h}),\boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}',\boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

João Dias (FCUL)

29/05/2015 18 / 29

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

Oefine the inclusion and projection:

$$\begin{array}{ccc} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \hline (g,h) \mapsto C_{g}(h) \end{array}$$

João Dias (FCUL)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

Oefine the inclusion and projection:

$$H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G$$
$$h \mapsto \overline{(1, h)}$$
$$\overline{(g, h)} \mapsto C_{g}(h)$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \xrightarrow{\simeq} Fun(H)^{\mathbf{H}}$$

João Dias (FCUL)

Characters of algebraic groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

Oefine the inclusion and projection:

$$H \stackrel{i}{\hookrightarrow} \widetilde{G} \stackrel{\pi}{\to} G$$
$$h \mapsto \overline{(1, h)}$$
$$\overline{(g, h)} \mapsto C_{g}(h)$$

•
$$i^*: Fun(\tilde{G})^{\mathbf{G}} \cong Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_1 \circ (i^*)^{-1}$.

João Dias (FCUL)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Define the action:

$$\begin{aligned} \alpha : (\mathbf{G} \times \mathbf{H}) \times \mathbf{H} \to \mathbf{G} \times \mathbf{H} \\ ((\mathbf{g}, \mathbf{h}), \mathbf{h}') \mapsto (\mathbf{g}\mathbf{h}', \mathbf{C}_{\mathbf{h}'}(\mathbf{h})) \end{aligned}$$

Define the inclusion and projection:

$$\begin{array}{c} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \overline{(g,h)} \mapsto C_{g}(h) \end{array}$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \cong Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_1 \circ (i^*)^{-1}$.

Induction Of Sheaves(Boyarchenko 2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})) \end{aligned}$$

Define the inclusion and projection:

$$\begin{array}{c} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \overline{(g,h)} \mapsto C_{g}(h) \end{array}$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \cong Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_1 \circ (i^*)^{-1}$.

Induction Of Sheaves(Boyarchenko 2010)

Define the action: $\alpha: (\mathbf{G} \times \mathbf{H}) \times \mathbf{H} \to \mathbf{G} \times \mathbf{H}$ $((g, h), h') \mapsto (gh', C_{h'}(h)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define the action:

$$\alpha : (\mathbf{G} \times \mathbf{H}) \times \mathbf{H} \to \mathbf{G} \times \mathbf{H}$$
$$((\mathbf{g}, \mathbf{h}), \mathbf{h}') \mapsto (\mathbf{g}\mathbf{h}', \mathbf{C}_{\mathbf{h}'}(\mathbf{h}))$$

Define the inclusion and projection:

$$\begin{array}{c} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \overline{(g,h)} \mapsto C_{g}(h) \end{array}$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \xrightarrow{\simeq} Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_1 \circ (i^*)^{-1}$.

Induction Of Sheaves(Boyarchenko 2010)

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

Define the inclusion and projection:

$$\begin{array}{ccc} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline (g,h) \mapsto C_{g}(h) \end{array}$$

イロト イロト イヨト イヨト ニヨー のくで

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 18 / 29

Define the action:

$$\alpha: (\mathbf{G} \times \mathbf{H}) \times \mathbf{H} \to \mathbf{G} \times \mathbf{H}$$
$$((\mathbf{g}, \mathbf{h}), \mathbf{h}') \mapsto (\mathbf{g}\mathbf{h}', \mathbf{C}_{\mathbf{h}'}(\mathbf{h}))$$

Define the inclusion and projection:

$$\begin{array}{ccc} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \overline{(g,h)} \mapsto C_{g}(h) \end{array}$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \xrightarrow{\simeq} Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_! \circ (i^*)^{-1}.$

Induction Of Sheaves(Boyarchenko 2010)

• Define the action: $\alpha : (G \times H) \times H \rightarrow G \times H$ $((g, h), h') \mapsto (gh', C_{h'}(h)).$

Define the inclusion and projection:

$$\begin{array}{c} \boldsymbol{i} & \overset{\boldsymbol{j}}{\hookrightarrow} \tilde{\boldsymbol{G}} \stackrel{\pi}{\to} \boldsymbol{G} \\ \boldsymbol{h} \mapsto \overline{(1,h)} & & \\ \hline \overline{(\boldsymbol{g},h)} \mapsto \boldsymbol{C}_{\boldsymbol{g}}(h) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$i^* : \mathcal{D}_{\boldsymbol{G}}(\tilde{\boldsymbol{G}}) \xrightarrow{\simeq} \mathcal{D}_{\boldsymbol{G}'}(\boldsymbol{G}')$$

João Dias (FCUL)

Characters of algebraic groups

29/05/2015 18 / 29

Define the action:

$$\alpha: (\mathbf{G} \times \mathbf{H}) \times \mathbf{H} \to \mathbf{G} \times \mathbf{H}$$
$$((\mathbf{g}, \mathbf{h}), \mathbf{h}') \mapsto (\mathbf{g}\mathbf{h}', \mathbf{C}_{\mathbf{h}'}(\mathbf{h}))$$

Define the inclusion and projection:

$$\begin{array}{ccc} H \stackrel{i}{\hookrightarrow} \tilde{G} \stackrel{\pi}{\to} G \\ h \mapsto \overline{(1,h)} \\ \hline \overline{(g,h)} \mapsto C_{g}(h) \end{array}$$

•
$$i^* : Fun(\tilde{G})^{\mathbf{G}} \cong Fun(H)^{\mathbf{H}}$$

• $ind_{\mathbf{H}}^{\mathbf{G}} = \pi_! \circ (i^*)^{-1}$.

Induction Of Sheaves(Boyarchenko 2010)

Define the action:

$$\begin{aligned} \alpha: (\boldsymbol{G} \times \boldsymbol{H}) \times \boldsymbol{H} \to \boldsymbol{G} \times \boldsymbol{H} \\ ((\boldsymbol{g}, \boldsymbol{h}), \boldsymbol{h}') \mapsto (\boldsymbol{g}\boldsymbol{h}', \boldsymbol{C}_{\boldsymbol{h}'}(\boldsymbol{h})). \end{aligned}$$

Define the inclusion and projection:

$$\begin{array}{ccc} & i & \tilde{G} & \pi & G \\ & h \mapsto \overline{(1,h)} & & & \\ & & \overline{(g,h)} \mapsto & C_{g}(h) \end{array} \end{array}$$

•
$$i^*: \mathcal{D}_{\boldsymbol{G}}(\tilde{\boldsymbol{G}}) \xrightarrow{\simeq} \mathcal{D}_{\boldsymbol{G}'}(\boldsymbol{G}')$$

•
$$ind_{H}^{G} = \pi_{!} \circ (i^{*})^{-1}$$
.

João Dias (FCUL)

Characters of algebraic groups

If $\chi \in Irr(H)$ so $ind_{H}^{G}\chi$ is irreducible if and only if $\overline{\chi} * \delta_{\mathbf{x}} * \overline{\chi} = 0$ for all $x \in G \setminus H$.

2

・ロト ・四ト ・ヨト ・ヨト

If $\chi \in Irr(H)$ so $ind_{H}^{G}\chi$ is irreducible if and only if $\overline{\chi} * \delta_{\mathbf{x}} * \overline{\chi} = 0$ for all $x \in G \setminus H$.

Admissible Pair for finite groups

Consider (H, χ) with $\chi \in Hom(H, \mathbb{C})$. Let G' be the stabilizer of the pair (H, χ) then the pair is admissible if:

- (a) G'/H is commutative.
- (b) The map:

$$B_{\chi} : G'/H \times G'/H \to \mathbb{C}^{\times}$$
$$(g_1, g_2) \mapsto \chi(C_{g_1}(g_2)g_2^{-1})$$

induces $G'/H \xrightarrow{\simeq} Hom(G'/H, \mathbb{C}^{\times})$. (c) For all $g \in G \setminus G'$ we have that $\chi|_{H \cap H^g} \neq \chi^g_{H \cap H^g}$.

(日) (個) (目) (日) (日)

If $\chi \in Irr(H)$ so $ind_{H}^{G}\chi$ is irreducible if and only if $\overline{\chi} * \delta_{\mathbf{x}} * \overline{\chi} = 0$ for all $x \in G \setminus H$.

Admissible Pair for finite groups

Consider (H, χ) with $\chi \in Hom(H, \mathbb{C})$. Let G' be the stabilizer of the pair (H, χ) then the pair is admissible if:

- (a) G'/H is commutative.
- (b) The map:

(c)

$$B_{\chi} : G'/H \times G'/H \to \mathbb{C}^{\times}$$
$$(g_1, g_2) \mapsto \chi(C_{g_1}(g_2)g_2^{-1})$$

induces
$$G'/H \xrightarrow{\rightarrow} Hom(G'/H, \mathbb{C}^{\times})$$

For all $g \in G \setminus G'$ we have that
 $\chi_{|H \cap Hg} \neq \chi_{|H \cap Hg}^{g}$.

Geometric Mackey Irreducibility criterion

Given a $M \in \mathcal{D}(G')$ we say that it satisfies the Geometric Mackey Condition (with respect to G), if for all $x \in G(k) \setminus G'(k)$ we have $M * \delta_x * M = 0$.

If $\chi \in Irr(H)$ so $ind_{H}^{G}\chi$ is irreducible if and only if $\overline{\chi} * \delta_{\mathbf{x}} * \overline{\chi} = 0$ for all $x \in G \setminus H$.

Admissible Pair for finite groups

Consider (H, χ) with $\chi \in Hom(H, \mathbb{C})$. Let G' be the stabilizer of the pair (H, χ) then the pair is admissible if:

- (a) G'/H is commutative.
- (b) The map:

$$B_{\chi}: \mathbf{G}'/\mathbf{H} \times \mathbf{G}'/\mathbf{H} \to \mathbb{C}^{\times}$$
$$(\mathbf{g_1}, \mathbf{g_2}) \mapsto \chi(\mathbf{C_{g_1}(g_2)g_2^{-1}})$$

induces
$$G'/H \xrightarrow{\simeq} Hom(G'/H, \mathbb{C}^{\times})$$

(c) For all $g \in G \setminus G'$ we have that $\chi_{|H \cap Hg} \neq \chi_{|H \cap Hg}^g$.

Geometric Mackey Irreducibility criterion

Given a $M \in \mathcal{D}(G')$ we say that it satisfies the *Geometric Mackey Condition* (with respect to G), if for all $x \in G(k) \setminus G'(k)$ we have $\overline{M} * \delta_x * \overline{M} = 0$.

Admissible Pair

Consider (H, \mathcal{L}) where \mathcal{L} is a multiplicative local system on H such that:

- (a) Let G' be the stabilizer of the pair (H, L) and consider its neutral connected component G'⁰. Then G'⁰/H is commutative.
- (b) The morphism $\varphi_{\mathcal{L}}: G'^{\mathbf{0}}/H \to (G'^{\mathbf{0}}/H)^*$ is an isogeny.
- (c) For all $g \in G(k) \setminus G'(k)$ we have: $\mathcal{L}_{|(H \cap H^g)^{\circ}} \ncong \mathcal{L}_{|(H \cap H^g)^{\circ}}^g$.

Then we call the pair (H, \mathcal{L}) an admissible pair.

Main Results

João Dias (FCUL)

Characters of algebraic groups

Image: Image:

Proposition (Drinfeld and Boyarchenko 2010)

Let G be a finite nilpotent group, then every irreducible character of G is induced from some linear character of some admissible pair.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 21/29</p>

Proposition (Drinfeld and Boyarchenko 2010)

Let G be a finite nilpotent group, then every irreducible character of G is induced from some linear character of some admissible pair.

Heisenberg minimal idempotent

Consider (H, \mathcal{L}) an admissible pair, and let G' be its stabilizer. Let $e_{\mathcal{L}} = \mathcal{L} \otimes (\mathbb{K}_H)$ and denote by $e'_{\mathcal{L}}$ its extension by zero to G'.

We call $e'_{\mathcal{L}}$ the Heisenberg minimal idempotent on G' defined by the pair (H, \mathcal{L}) .

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 21/29</p>

Proposition (Drinfeld and Boyarchenko 2010)

Let G be a finite nilpotent group, then every irreducible character of G is induced from some linear character of some admissible pair.

Heisenberg minimal idempotent

Consider (H, \mathcal{L}) an admissible pair, and let G' be its stabilizer. Let $e_{\mathcal{L}} = \mathcal{L} \otimes (\mathbb{K}_H)$ and denote by $e'_{\mathcal{L}}$ its extension by zero to G'.

We call $e'_{\mathcal{L}}$ the Heisenberg minimal idempotent on G' defined by the pair (H, \mathcal{L}) .

Lemma (Boyarchenko 2010)

The object $e'_{\mathcal{L}} \in \mathcal{D}_{G'}(G')$ is a closed idempotent, a minimal weak idempotent (so it's a minimal closed idempotent), and satisfies the *Geometric Mackey Condition*.

◆□▶ ◆圖▶ ◆臣▶ ★臣▶ 三臣 - のへで、

Lemma (Boyarchenko and Drinfeld 2011)

- If M, N ∈ D_{G'}(G') satisfies the Geometric Mackey Condition then ind^G_{G'}(M) * ind^G_{G'}(N) → ind^G_{G'}(M * N)
- If $e \in \mathcal{D}_{G'}(G')$ be a weak idempotent that satisfy the *Geometric Mackey Condition* then for all $M, N \in e\mathcal{D}_{G'}(G')$ we have $\overline{M} * \delta_x * \overline{N} = 0$ for all $x \in G(k) \setminus G'(k)$.

Lemma (Boyarchenko and Drinfeld 2011)

- If M, N ∈ D_{G'}(G') satisfies the Geometric Mackey Condition then ind^G_{G'}(M) * ind^G_{G'}(N) → ind^G_{G'}(M * N)
- If $e \in \mathcal{D}_{G'}(G')$ be a weak idempotent that satisfy the *Geometric Mackey Condition* then for all $M, N \in e\mathcal{D}_{G'}(G')$ we have $\overline{M} * \delta_x * \overline{N} = 0$ for all $x \in G(k) \setminus G'(k)$.

Lemma (Boyarchenko 2010)

Let $e \in \mathcal{D}_{G'}(G')$ be a weak idempotent that satisfy *Geometric Mackey Condition*. Then:

- If $M \in e\mathcal{D}_{G'}(G')$ then $ind_{G'}^{G}(M) \in f\mathcal{D}_{G}(G)$ (where $f = ind_{G'}^{G}e$).
- If e and f are closed idempotents then $(ind_{G'}^{G})_{|e\mathcal{D}_{G'}(G')}$ is an equivalence of $e\mathcal{D}_{G'}(G')$ and $f\mathcal{D}_{G}(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Corollary (Boyarchenko and Drinfeld 2011)

Let $e \in \mathcal{D}_{G'}(G')$ be a closed idempotent that satisfy *Geometric Mackey* Condition and such that $f = ind_{G'}^{G}e$ is closed. Then:

- $e\mathcal{D}_{G'}(G')$ and $f\mathcal{D}_G(G)$ are monoidal categories.
- We have an monoidal equivalence:

$$(ind_{G'}^{\mathcal{G}})|_{e\mathcal{D}_{G'}(G')}: e\mathcal{D}_{G'}(G') \to f\mathcal{D}_{G}(G).$$

(四) (日) (日) (日) (日)

Lemma (Boyarchenko 2010)

Let $e \in \mathcal{D}_{G'}(G')$ be a weak idempotent that satisfy the *Geometric Mackey Condition*. Then the object $f = ind_{G'}^G e \in \mathcal{D}_G(G)$ is a weak idempotent, and if e is minimal f is minimal as well.

э.

・ 通 ト ・ ヨ ト ・ ヨ ト

Lemma (Boyarchenko 2010)

Let $e \in \mathcal{D}_{G'}(G')$ be a weak idempotent that satisfy the *Geometric Mackey Condition*. Then the object $f = ind_{G'}^G e \in \mathcal{D}_G(G)$ is a weak idempotent, and if e is minimal f is minimal as well.

Proposition (Boyarchenko and Drinfeld 2011)

- If e ∈ D_G(G) is a closed minimal idempotent then it's a weak minimal idempotent.
- If $e \in \mathcal{D}_G(G)$ is a weak minimal idempotent then e it's closed.

Theorem (Boyarchenko and Drinfeld 2011)

Let $e \in \mathcal{D}_{G'}(G')$ be a closed minimal idempotent such that satisfy the *Geometric Mackey Condition* and let $f = ind_{G'}^{G}e$. Then:

- f is a closed minimal idempotent in $\mathcal{D}_G(G)$.
- The functor $ind_{G'}^G$ restricts to a monoidal equivalence $e\mathcal{D}_{G'}(G') \to f\mathcal{D}_G(G).$
- If M ∈ eD_{G'}(G') is perverse then ind^G_{G'}(M)[dim(G/G')] is perverse as well.
- $n_f = n_e dim(G/G')$.

▲ @ ▶ ▲ 注 ▶ ▲ 注 ▶ ○ 注 ● の Q () ●

Proposition (Boyarchenko and Drinfeld 2011)

For all $N \in \mathcal{D}(G)$, non zero, There exists a minimal closed idempotent $f \in \mathcal{D}_G(G)$ such that $N * f \neq 0$, with f induced from some Heisenberg idempotent.

(ロ) (同) (三) (三) (三) (○) (○)

Proposition (Boyarchenko and Drinfeld 2011)

For all $N \in \mathcal{D}(G)$, non zero, There exists a minimal closed idempotent $f \in \mathcal{D}_G(G)$ such that $N * f \neq 0$, with f induced from some Heisenberg idempotent.

Theorem (Boyarchenko and Drinfeld 2011)

If $e'_{\mathcal{L}} \in \mathcal{D}_{G'}(G')$ is an Heisenberg idempotent for some admissible pair (H, \mathcal{L}) then:

- $f = ind_{G'}^G e'_{\mathcal{L}}$ is a minimal closed idempotent.
- $n_{e'_{\mathcal{C}}} = dim(H)$ and $n_f = dim(H) dim(G/G')$.
- Every $f \in \mathcal{D}_G(G)$ minimal closed idempotent comes from an admissible pair.

◆□▶ ◆圖▶ ◆臣▶ ★臣▶ 三臣 - のへで、

Theorem (Deshpande 2010 and Datta 2010)

- If $e'_{\mathcal{L}} \in \mathcal{D}_{G'}(G')$ is an Heisenberg idempotent then:
 - *M*^{perv}_{e'_L} is an abelian category semisimple with a finite number of simple objects.
 - There exists an unique integer $n_{e'_{\mathcal{L}}}$ such that $e'_{\mathcal{L}}[-n_{e'_{\mathcal{L}}}] \in \mathcal{M}^{perv}_{e'_{\mathcal{L}}}$ (Moreover we have $0 \le n_{e'_{\mathcal{L}}} \le \dim(G)$). And $\mathcal{M}_{e'_{\mathcal{L}}} := \mathcal{M}^{perv}_{e'_{\mathcal{L}}}[n_{e'_{\mathcal{L}}}]$ is monoidal.

Theorem (Deshpande 2010 and Datta 2010)

- If $e'_{\mathcal{L}} \in \mathcal{D}_{G'}(G')$ is an Heisenberg idempotent then:
 - *M*^{perv}_{e'_L} is an abelian category semisimple with a finite number of simple objects.
 - There exists an unique integer n_{e'_L} such that e'_L[-n_{e'_L}] ∈ M^{perv}_{e'_L} (Moreover we have 0 ≤ n_{e'_L} ≤ dim(G)). And M_{e'_L} := M^{perv}_{e'_L}[n_{e'_L}] is monoidal.

Theorem (Boyarchenko and Drinfeld 2011)

If $e \in \mathcal{D}_G(G)$ is a closed minimal idempotent. Then:

- *M*^{perv}_e is an abelian category semisimple with a finite number of simple objects.
- There exists an unique integer n_e such that e[-n_e] ∈ M_e^{perv} (Moreover we have 0 ≤ n_e ≤ dim(G)). And M_e := M_e^{perv}[n_e] is monoidal.

・ロト ・四ト ・ヨト ・ヨト

29/05/2015 28 / 29

а.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

э.

イロト イヨト イヨト イヨト

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

2

イロト イロト イヨト イヨト

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

э.

イロト イロト イヨト イヨト

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

Heisenberg idempotents on unipotent groups,

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Metric groups attached to biextensions,

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Faisceaux Pervers,

by A.A. Beilinson, J. Bernstein and P. Deligne, in Analyse et topologie sur les espaces singuliers (1), Astérisque 100, 1982.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Metric groups attached to biextensions,

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Faisceaux Pervers,

by A.A. Beilinson, J. Bernstein and P. Deligne, in Analyse et topologie sur les espaces singuliers (1), Astérisque 100, 1982.

Character sheaves and generalizations,

by G. Lusztig, in: The unity of mathematics (editors: P. Etingof, V. Retakh, I. M. Singer), 443–455, Progress in Math. 244, Birkhauser Boston, Boston, MA, 2006, arXiv: math.RT/0309134.

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Metric groups attached to biextensions,

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Faisceaux Pervers,

by A.A. Beilinson, J. Bernstein and P. Deligne, in Analyse et topologie sur les espaces singuliers (1), Astérisque 100, 1982.

Character sheaves and generalizations,

by G. Lusztig, in: The unity of mathematics (editors: P. Etingof, V. Retakh, I. M. Singer), 443–455, Progress in Math. 244, Birkhauser Boston, Boston, MA, 2006, arXiv: math.RT/0309134.

A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic,

by M. Boyarchenko and V. Drinfeld, in Preprint, September 2006, arXiv:math.RT/0609769.

イロト 不得下 イヨト イヨト

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Metric groups attached to biextensions,

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Faisceaux Pervers,

by A.A. Beilinson, J. Bernstein and P. Deligne, in Analyse et topologie sur les espaces singuliers (1), Astérisque 100, 1982.

Character sheaves and generalizations,

by G. Lusztig, in: The unity of mathematics (editors: P. Etingof, V. Retakh, I. M. Singer), 443–455, Progress in Math. 244, Birkhauser Boston, Boston, MA, 2006, arXiv: math.RT/0309134.

A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic,

by M. Boyarchenko and V. Drinfeld, in Preprint, September 2006, arXiv:math.RT/0609769.

Characters of unipotent groups over finite fields,

by M. Boyarchenko , in Selecta Math. 16 (2010),no. 4, 857–933.

イロト 不得下 イヨト イヨト

Categories for the working mathematician,

by S. MacLane, 2nd ed. Graduate Texts in Mathematics 5. Springer-Verlag, New York, 1998.

Categories and Sheaves,

by M. Kashiwara and P. Schapira, Grundlehren Math. Wiss. 332, Springer-Verlag, Berlin, 2006.

Equivariant Sheaves and Functors,

by J. Bernstein and V. Lunts, in Lecture Notes in Math. 1578, Springer-Verlag, Berlin, 1994.

La conjecture de Weil II,

by P. Deligne, in Publ. Math. IHES 52 (1980), 137-252.

Metric groups attached to biextensions,

by S. Datta, in Transformation Groups 15 (2010), no. 1, 72-91.

by T. Deshpande, in Math. Res. Lett. 17 (2010), no. 3, 415-434.

Faisceaux Pervers,

by A.A. Beilinson, J. Bernstein and P. Deligne, in Analyse et topologie sur les espaces singuliers (1), Astérisque 100, 1982.

Character sheaves and generalizations,

by G. Lusztig, in: The unity of mathematics (editors: P. Etingof, V. Retakh, I. M. Singer), 443–455, Progress in Math. 244, Birkhauser Boston, Boston, MA, 2006, arXiv: math.RT/0309134.

A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic,

by M. Boyarchenko and V. Drinfeld, in Preprint, September 2006, arXiv:math.RT/0609769.

Characters of unipotent groups over finite fields,

by M. Boyarchenko , in Selecta Math. 16 (2010),no. 4, 857–933.

by M. Boyarchenko and V. Drinfeld, in Preprint, August 2011 arXiv:0810.0794.

