Generalized Matrix Functions

Sónia Carvalho,Pedro J. Freitas
UL-IPL
Seminário CEAFEL

Contents

- Derivatives
- Generalized matrix function
- Formulas for higher order derivatives
- ξ - symmetric tensor power
- Derivatives for operators
- Derivatives for matrices
- Norms
- Known results
- Case $G=S_{m}$
- General case

Derivatives

Fréchet derivative

Let $A, X \in \mathbb{C}^{n \times n}$ and $f: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}$. We define

$$
D f(A)(X):=\left.\frac{d}{d t}\right|_{t=0} f(A+t X)
$$

If $f(A)=\operatorname{det} A$, then we have the Jacobi formula

$$
D \operatorname{det}(A)(X)=\operatorname{tr}(\operatorname{adj}(A) X)
$$

where $\operatorname{adj}(A)$ is the transpose of the matrix of cofactors.
For the permanent, we have (R. Bhatia, P. Grover)

$$
D \operatorname{per}(A)(X)=\operatorname{tr}(\operatorname{padj}(A) X)
$$

where $\operatorname{padj}(A)$ is the transpose of the matrix of permanental cofactors.

Generalized matrix function

Let G be a subgroup of S_{n} and P a representation of G.
A character of G is a map $\xi: G \mapsto \mathbb{C}$ afforded by the representation P defined as

$$
\xi(\sigma)=\operatorname{tr} P(\sigma)
$$

Definition

Let $A \in \mathbb{C}^{n \times n}$ and ξ a character of the subgroup G. The generalized matrix function determined by ξ and G is

$$
d_{\xi}^{G}(A)=\sum_{\sigma \in G} \xi(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)} .
$$

This is a multinear map in the columns of the matrix A and a polynomial map in the matrix entries.

Generalized matrix function

Suppose ξ is a irreducible character.
$G=S_{n}$

- $d_{\xi}^{G}(A)=d_{\xi}(A)$ is the immanant of A.
- If $\xi=1$ then $d_{\xi}^{G}(A)=\operatorname{per}(A)$ the permanent of A.
- If $\xi=\operatorname{sgn}$ then $d_{\xi}^{G}(A)=\operatorname{det}(A)$ the determinant of A.

Definitions

Suppose $k \leq n$, define:

- $\Gamma_{k, n}:$ the set of all maps $\{1, \ldots, k\} \longrightarrow\{1, \ldots, n\}$.
- $G_{k, n}$: the set of increasing maps $\{1, \ldots, k\} \longrightarrow\{1, \ldots, n\}$.
- $Q_{k, n}$: the set of strictly increasing maps $\{1, \ldots, k\} \longrightarrow\{1, \ldots, n\}$.

For $f: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}$, we define

$$
D^{k} f(A)\left(X^{1}, \ldots, X^{k}\right):=\left.\frac{\partial^{k}}{\partial t_{1} \ldots \partial t_{k}}\right|_{t_{1}=\ldots=t_{k}=0} f\left(A+t_{1} X^{1}+\ldots+t_{k} X^{k}\right)
$$

If f is multilinear this derivative is the coefficient of $t_{1} \ldots t_{k}$ in the polynomial $f\left(A+t_{1} X^{1}+\ldots+t_{k} X^{k}\right)$.

Formula (1) for the k-th derivative

Let $\alpha \in Q_{k, n}$. Define $A\left(\alpha ; X^{1}, \ldots, X^{k}\right)$ as the matrix of order n obtained from A by replacing the $\alpha(j)$ column of A by the $\alpha(j)$ column of X^{j}.

First expression

For every $1 \leq k \leq n$,

$$
D^{k} d_{\xi}^{G}(A)\left(X^{1}, \ldots, X^{k}\right)=\sum_{\sigma \in S_{k}} \sum_{\alpha \in Q_{k, n}} d_{\xi}^{G} A\left(\alpha ; X^{\sigma(1)}, \ldots, X^{\sigma(k)}\right) .
$$

Already known for $d_{\xi}=$ det, per (R. Bhatia, T. Jain, P. Grover).

Formula (1), rewritten

Define the mixed generalized matrix function of X^{1}, \ldots, X^{n} as

$$
\Delta_{\xi}^{G}\left(X^{1}, \ldots, X^{n}\right):=\frac{1}{n!} \sum_{\sigma \in S_{n}} d_{\xi}^{G}\left(X_{[1]}^{\sigma(1)}, \ldots, X_{[n]}^{\sigma(n)}\right)
$$

where $Y_{[i]}$ is the i-th column of Y.
For $k<n$, we abbreviate $\Delta_{\xi}^{G}\left(A, \ldots, A, X^{1}, \ldots, X^{k}\right)$ by $\Delta_{\xi}^{G}\left(A ; X^{1}, \ldots, X^{k}\right)$.

First expression, rewritten

$$
D^{k} d_{\xi}^{G}(A)\left(X^{1}, \ldots, X^{k}\right)=\frac{n!}{(n-k)!} \Delta_{\xi}^{G}\left(A ; X^{1}, \ldots, X^{k}\right)
$$

Derivatives of the ξ-symmetric power

The ξ-symmetric tensors

Let V be a finite-dimensional vector space with inner product and consider its m-fold tensor power $\otimes^{m} V$. Define the ξ symmetriser:

$$
T(G, \xi)=\frac{\xi(\mathrm{id})}{|G|} \sum_{\sigma \in G} \xi(\sigma) P(\sigma)
$$

where $P(\sigma)\left(v_{1} \otimes \ldots \otimes v_{m}\right)=v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(m)}$.
The range of $T(G, \xi)$, denoted $V_{\xi}(G) \leq \bigotimes^{m} V$ is called the ξ-symmetric class of tensors.

- For $\xi \equiv 1$, we get symmetric tensors.
- For $\xi=$ sgn, we get anti-symmetric tensors.

$$
v_{1} * v_{2} * \ldots * v_{m}=T(G, \xi)\left(v_{1} \otimes v_{2} \otimes \ldots \otimes v_{m}\right)
$$

These vectors are called decomposable symmetrised tensors.

The ξ-symmetric tensor power of T

Given $T_{1}, \ldots T_{m} \in L(V)$, the space $V_{\xi}(G)$ is invariant for the operator

$$
T_{1} \tilde{\otimes} \cdots \tilde{\otimes} T_{m}:=\frac{1}{m!} \sum_{\sigma \in S_{m}} T_{\sigma(1)} \otimes \cdots \otimes T_{\sigma(m)}
$$

We denote its restriction to $V_{\xi}(G)$ as $T_{1} * \cdots * T_{m}$.
For $T \in L(V)$, define the ξ-symmetric tensor power of T as

$$
K_{\xi}^{G}(T)=\left(\otimes^{m} T\right) \mid V_{\xi}(G)=\underbrace{T * T * \cdots * T}_{m \text { times }}
$$

Now we establish a formula for the directional derivative of the map $K_{\xi}^{G}: L\left(V_{\xi}(G)\right) \rightarrow L\left(V_{\xi}(G)\right)$.

Formula for the derivative of K_{ξ}^{G}

Derivative for operators $\otimes^{m} T$

$$
D^{k} \otimes^{m} T\left(X_{1}, \ldots, X_{k}\right)=\frac{m!}{(m-k)!} \underbrace{T \tilde{\otimes} \cdots \tilde{\otimes} T}_{m-k \text { times }} \tilde{\otimes} X_{1} \tilde{\otimes} \cdots * \tilde{\otimes} X_{k}
$$

Known for \vee, \wedge (Bhatia, Grover, Jain) We have proved that:

Derivative for operators

$$
D^{k} K_{\xi}^{G}(T)\left(X_{1}, \ldots, X_{k}\right)=\frac{m!}{(m-k)!} \underbrace{T * \cdots * T}_{m-k \text { times }} * X_{1} * \cdots * X_{k}
$$

What about for matrices?

Bases

In general, $V_{\xi}(G)$ does not have an orthonormal basis formed by decomposable symmetrised tensors.
Recall that $\Gamma_{m, n}$ is the set of all maps $\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$. Take $\left\{e_{1}, \ldots, e_{n}\right\}$ an o.n. basis of V, and, for $\alpha \in \Gamma$, define

$$
e_{\alpha}^{*}:=e_{\alpha(1)} * \ldots * e_{\alpha(m)}
$$

Take

- \mathcal{E}^{\prime} : the basis of $V_{\xi}(G)$ formed by elements of the from e_{α}^{*}, with indexing set $\widehat{\Delta}$:

$$
\mathcal{B}=\left\{e_{\alpha}^{*}: \alpha \in \widehat{\Delta} \subseteq \Gamma_{m, n}\right\} .
$$

- \mathcal{E} : the orthonormal basis of $V_{\xi}(G)$ obtained by applying the Gram-Schmidt process to \mathcal{E}^{\prime},
- B: the change of basis matrix from \mathcal{E} to \mathcal{E}^{\prime} - does not depend on the original basis of V.

Formula for the derivative of $K_{\xi}^{G}(A)$
Derivative for operators

$$
D^{k} K_{\xi}^{G}(T)\left(X_{1}, \ldots, X_{k}\right)=\frac{m!}{(m-k)!} \underbrace{T * \cdots * T}_{m-k \text { times }} * X_{1} * \cdots * X_{k}
$$

Using the bases, it is possible to define $K_{\xi}^{G}(A)$ for a matrix A.
Denote by $\operatorname{mixgmm}_{\xi}^{G}\left(A ; X^{1}, \ldots, X^{k}\right)$ the matrix indexed by $\widehat{\Delta}$ whose (γ, δ) entry is $\Delta_{\xi}^{G}\left(A[\gamma \mid \delta] ; X^{1}[\gamma \mid \delta], \ldots, X^{k}[\gamma \mid \delta]\right)$.

Derivative for matrices

$$
D^{k} K_{\xi}^{G}(A)\left(X^{1}, \ldots, X^{k}\right)=\frac{\xi(i d) m!}{|G|(m-k)!} B^{*} \operatorname{mixgmm}_{\xi}\left(A ; X^{1}, \ldots, X^{k}\right) B .
$$

Norms

Two results

Definition

The norm of a multilinear operator Φ is given by

$$
\|\Phi\|=\sup _{\left\|X^{1}\right\|=\ldots=\left\|X^{k}\right\|=1}\left\|\Phi\left(X^{1}, \ldots, X^{k}\right)\right\| .
$$

We want to estimate $\left\|D^{k} f(T)\right\|$.
(1) When $G=S_{m}$ we calculate the exact value for the norm considering $f(T)=K_{\xi}(T)$.
(2) When G is a subgroup of S_{m} we obtain an upper bound for the norm when $f(T)=K_{\xi}^{G}(T)$.

Known Results

Let $k \leq m \leq n$.

- $\left\|D \wedge^{m} T\right\|=p_{m-1}\left(\nu_{1}, \ldots, \nu_{m}\right)$;
- $\left\|D \vee^{m} T\right\|=m\|T\|^{m-1}=m \nu_{1}{ }^{m-1}$;
- $\left\|D^{k} \otimes^{m} T\right\|=\frac{m!}{(m-k)!}\|T\|^{m-k}=\frac{m!}{(m-k)!} \nu_{1}{ }^{m-k}$;
- $\left\|D^{k} \vee^{m} T\right\|=\frac{m!}{(m-k)!}\|T\|^{m-k}=\frac{m!}{(m-k)!} \nu_{1}{ }^{m-k}$;
- $\left\|D^{k} \wedge^{m} T\right\|=k!p_{m-k}\left(\nu_{1}, \ldots, \nu_{m}\right)$;
- $\left\|D K_{\xi}(T)\right\|=\sum_{j=1}^{m} \prod_{\substack{i=1 \\ i \neq j}}^{m} \nu_{\omega(\xi)(i)}$.
where $p_{m-k}\left(x_{1}, \ldots, x_{m}\right)$ is the elementary symmetric polynomial of degree $m-k$.

Partitions

The map $K_{\xi}(T)$ has an associated irreducible character, and hence a partition of m.

For $x \in \mathbb{C}^{n}$ and $\left(\pi_{1}, \ldots, \pi_{m}\right) \vdash m, \alpha \in \Gamma_{m, n}$, define

$$
\begin{gathered}
x_{\alpha}=\left(x_{\alpha(1)}, \ldots, x_{\alpha(m)}\right) \\
\omega(\pi):=(\underbrace{1, \ldots, 1}_{\pi_{1} \text { times }}, \underbrace{2, \ldots, 2}_{\pi_{2} \text { times }}, \ldots, \underbrace{I(\pi), \ldots, I(\pi)}_{\pi_{/(\pi)} \text { times }}) \in \Gamma_{m, n} .
\end{gathered}
$$

Let $\operatorname{Im} \alpha=\left\{i_{1}, \ldots, i_{i}\right\}$, with $\left|\alpha^{-1}\left(i_{1}\right)\right| \geq \ldots \geq\left|\alpha^{-1}\left(i_{l}\right)\right|$.

$$
\mu(\alpha):=\left(\left|\alpha^{-1}\left(i_{1}\right)\right|, \ldots,\left|\alpha^{-1}\left(i_{l}\right)\right|\right)
$$

is called the multiplicity partition of α.
We have $\mu(\omega(\pi))=\pi$ and $e_{\alpha}^{*} \neq 0$ iff ξ majorizes $\mu(\alpha)$.

Main Theorems: $G=S_{m}$

Norm of $D^{k} K_{\xi}(T)$

$$
\left\|D^{k} K_{\xi}(T)\right\|=k!p_{m-k}\left(\nu_{\omega(\xi)}\right)
$$

- For $\xi \equiv 1, \xi=(m, 0, \ldots, 0), \omega(\xi)=(1,1, \ldots, 1)$.
- For $\xi=\operatorname{sgn}, \xi=(1,1, \ldots, 1)$ and $\omega(\xi)=(1,2, \ldots, m)$.

Norm of the derivative of the immanant

$$
\left\|D^{k} d_{\xi}(A)\right\| \leq k!p_{n-k}\left(\nu_{\omega(\xi)}\right)
$$

Done for $k=1$ by R. Bhatia and J. Dias da Silva.
The inequality becomes equality for $\xi=\operatorname{sgn}$, and $d_{\xi}=$ det.

Steps of the proof

(1) Let $T=U P$ the polar decomposition of the operator T. First we prove that $\left\|D^{k} K_{\chi}(T)\right\|=\left\|D^{k} K_{\chi}(P)\right\|$. (unitarily invariance)
(2) The map $D^{k} K_{\chi}(P)$ is multilinear and positive then its norm is attained at (I, I, \ldots, I).
(3) We calculate the largest singular value of $D^{k} K_{\chi}(P)(I, I, \ldots, I)$ that equals the norm.

For step (2) we use the following theorem.(R. Bhatia and T. Jain)

Russo-Dye Multilinear version

Suppose $\Phi: M_{n}^{k}(\mathbb{C}) \longrightarrow M_{l}(\mathbb{C})$ is a positive multilinear operator. Then

$$
\|\Phi\|=\|\Phi(I, I, \ldots, l)\| .
$$

General Case

When G is any subgroup of S_{m} this relation between partitions and irreducible characters of G does not exist.

Definition

Suppose ξ is an irreducible character of G. The multilinearity partition of the character $\xi, \mathrm{MP}(\xi)$, is the least upper bound of the partitions π of m for which $\left(\xi, \chi_{\pi}\right)_{G} \neq 0$.

When $G=S_{m}$, the multilinearity partition is the partition usually associated with ξ.

Proposition

Suppose ξ is an irreducible character of G and let $\alpha \in \Gamma_{m, n}$. If $e_{\alpha}^{*} \neq 0$, then $\mu(\alpha) \preceq \operatorname{MP}(\xi)$.

Lemma

Let α, β be elements of $\widehat{\Delta} \cap G_{m, n}$ and π be a partition of m.
(1) $\lambda(\alpha) \geq \lambda(\beta)$ if and only if α precedes β in the lexicographic order.
(2) If $\mu(\alpha) \preceq \pi$ then $\omega(\pi)$ precedes α in the lexicographic order.

Main Theorem

Let ξ be an irreducible character of G. Consider the map $T \rightarrow K_{\xi}^{G}(T)$. Then

$$
\left\|D^{k} K_{\xi}(T)\right\| \leq k!p_{m-k}\left(\nu_{\omega(\operatorname{MP}(\xi))}\right)
$$

where p_{m-k} is the symmetric polynomial of degree $m-k$ in m variables, $\nu_{1} \geq \ldots \geq \nu_{n}$ are the singular values of T and $\mathrm{MP}(\xi)$ the multilinearity partition of ξ.

Bibliography

- R. Bhatia, J. A. Dias da Silva, Variation of induced linear operators, Linear Algebra and its Applications, 341 (2002) 391-402.
- R. Bhatia, S. Friedland, Variation of Grassman powers and spectra, Linear Algebra and its Applications, 40 (1981) 1-18.
- R. Bhatia, P. Grover, T. Jain, Derivatives of tensor powers and their norms, Electronic Linear Algebra.
- S. Carvalho, P. J. Freitas, The k-th derivatives of the immanant and the χ-symmetric power of an operator, The Electronic Journal of Linear Algebra., 19 (2014).
- S. Carvalho, P. J. Freitas, The norm of the k-th derivative of the χ-symmetric power of an operator, The Electronic Journal of Linear Algebra,19,(2014).
- T. Jain, Derivatives for antisymmetric tensor powers and perturbation bounds Linear Algebra and its Applications, 435 (2011) 1111-1121.

