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Derivatives
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Fréchet derivative

Let A,X ∈ Cn×n and f : Cn×n → C. We define

Df (A)(X ) :=
d

dt

∣∣∣∣
t=0

f (A + tX )

If f (A) = detA, then we have the Jacobi formula

D det(A)(X ) = tr(adj(A)X ),

where adj(A) is the transpose of the matrix of cofactors.

For the permanent, we have (R. Bhatia, P. Grover)

D per(A)(X ) = tr(padj(A)X )

where padj(A) is the transpose of the matrix of permanental cofactors.
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Generalized matrix function

Let G be a subgroup of Sn and P a representation of G .
A character of G is a map ξ : G 7→ C afforded by the representation P
defined as

ξ(σ) = trP(σ).

Definition

Let A ∈ Cn×n and ξ a character of the subgroup G . The generalized
matrix function determined by ξ and G is

dG
ξ (A) =

∑
σ∈G

ξ(σ)
n∏

i=1

aiσ(i).

This is a multinear map in the columns of the matrix A and a polynomial
map in the matrix entries.
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Generalized matrix function

Suppose ξ is a irreducible character.

G = Sn

dG
ξ (A) = dξ(A) is the immanant of A.

If ξ = 1 then dG
ξ (A) = per(A) the permanent of A.

If ξ = sgn then dG
ξ (A) = det(A) the determinant of A.
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Definitions

Suppose k ≤ n, define:

Γk,n: the set of all maps {1, . . . , k} −→ {1, . . . , n}.
Gk,n: the set of increasing maps {1, . . . , k} −→ {1, . . . , n}.
Qk,n: the set of strictly increasing maps {1, . . . , k} −→ {1, . . . , n}.

For f : Cn×n → C, we define

Dk f (A)(X 1, . . . ,X k) :=
∂k

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

f (A + t1X
1 + . . .+ tkX

k).

If f is multilinear this derivative is the coefficient of t1 . . . tk in the
polynomial f (A + t1X

1 + . . .+ tkX
k).
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Formula (1) for the k-th derivative

Let α ∈ Qk,n. Define A(α;X 1, . . . ,X k) as the matrix of order n obtained
from A by replacing the α(j) column of A by the α(j) column of X j .

First expression

For every 1 ≤ k ≤ n,

DkdG
ξ (A)(X 1, . . . ,X k) =

∑
σ∈Sk

∑
α∈Qk,n

dG
ξ A(α;X σ(1), . . . ,X σ(k)).

Already known for dξ = det, per (R. Bhatia, T. Jain, P. Grover).
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Formula (1), rewritten

Define the mixed generalized matrix function of X 1, . . . ,X n as

∆G
ξ (X 1, . . . ,X n) :=

1

n!

∑
σ∈Sn

dG
ξ (X

σ(1)
[1] , . . . ,X

σ(n)
[n] ).

where Y[i ] is the i-th column of Y .

For k < n, we abbreviate ∆G
ξ (A, . . . ,A,X 1, . . . ,X k) by

∆G
ξ (A;X 1, . . . ,X k).

First expression, rewritten

DkdG
ξ (A)(X 1, . . . ,X k) =

n!

(n − k)!
∆G
ξ (A;X 1, . . . ,X k).
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Derivatives of the ξ-symmetric power
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The ξ-symmetric tensors

Let V be a finite-dimensional vector space with inner product and consider
its m-fold tensor power ⊗mV . Define the ξ symmetriser:

T (G , ξ) =
ξ(id)

|G |
∑
σ∈G

ξ(σ)P(σ),

where P(σ)(v1 ⊗ . . .⊗ vm) = vσ−1(1) ⊗ . . .⊗ vσ−1(m).

The range of T (G , ξ), denoted Vξ(G ) ≤
⊗m V is called the ξ-symmetric

class of tensors.

For ξ ≡ 1, we get symmetric tensors.

For ξ = sgn, we get anti-symmetric tensors.

v1 ∗ v2 ∗ . . . ∗ vm = T (G , ξ)(v1 ⊗ v2 ⊗ . . .⊗ vm).

These vectors are called decomposable symmetrised tensors.
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The ξ-symmetric tensor power of T

Given T1, . . .Tm ∈ L(V ), the space Vξ(G ) is invariant for the operator

T1⊗̃ · · · ⊗̃Tm :=
1

m!

∑
σ∈Sm

Tσ(1) ⊗ · · · ⊗ Tσ(m)

We denote its restriction to Vξ(G ) as T1 ∗ · · · ∗ Tm.

For T ∈ L(V ), define the ξ-symmetric tensor power of T as

KG
ξ (T ) = (⊗mT )|Vξ(G) = T ∗ T ∗ · · · ∗ T︸ ︷︷ ︸

m times

Now we establish a formula for the directional derivative of the map
KG
ξ : L(Vξ(G ))→ L(Vξ(G )).

SC (CEAFEL-ISEL) Derivatives and Norms April 28 th 2015 12 / 24



Formula for the derivative of KG
ξ

Derivative for operators ⊗mT

Dk ⊗m T (X1, . . . ,Xk) =
m!

(m − k)!
T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸
m−k times

⊗̃X1⊗̃ · · · ∗ ⊗̃Xk

Known for ∨,∧ (Bhatia, Grover, Jain) We have proved that:

Derivative for operators

DkKG
ξ (T )(X1, . . . ,Xk) =

m!

(m − k)!
T ∗ · · · ∗ T︸ ︷︷ ︸
m−k times

∗X1 ∗ · · · ∗ Xk

What about for matrices?
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Bases
In general, Vξ(G ) does not have an orthonormal basis formed by
decomposable symmetrised tensors.

Recall that Γm,n is the set of all maps {1, . . . ,m} → {1, . . . , n}. Take
{e1, . . . , en} an o.n. basis of V , and, for α ∈ Γ, define

e∗α := eα(1) ∗ . . . ∗ eα(m).

Take

E ′: the basis of Vξ(G ) formed by elements of the from e∗α, with

indexing set ∆̂:
B = {e∗α : α ∈ ∆̂ ⊆ Γm,n}.

E : the orthonormal basis of Vξ(G ) obtained by applying the
Gram-Schmidt process to E ′,
B: the change of basis matrix from E to E ′ — does not depend on
the original basis of V .
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Formula for the derivative of KG
ξ (A)

Derivative for operators

DkKG
ξ (T )(X1, . . . ,Xk) =

m!

(m − k)!
T ∗ · · · ∗ T︸ ︷︷ ︸
m−k times

∗X1 ∗ · · · ∗ Xk

Using the bases, it is possible to define KG
ξ (A) for a matrix A.

Denote by mixgmmG
ξ (A;X 1, . . . ,X k) the matrix indexed by ∆̂ whose

(γ, δ) entry is ∆G
ξ (A [γ|δ] ;X 1 [γ|δ] , . . . ,X k [γ|δ]).

Derivative for matrices

DkKG
ξ (A)(X 1, . . . ,X k) =

ξ(id)m!

|G |(m − k)!
B∗mixgmmξ(A;X 1, . . . ,X k)B.
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Norms
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Two results

Definition

The norm of a multilinear operator Φ is given by

‖Φ‖ = sup
‖X 1‖=...=‖X k‖=1

‖Φ(X 1, . . . ,X k)‖.

We want to estimate ‖Dk f (T )‖.
1 When G = Sm we calculate the exact value for the norm considering

f (T ) = Kξ(T ).

2 When G is a subgroup of Sm we obtain an upper bound for the norm
when f (T ) = KG

ξ (T ) .

SC (CEAFEL-ISEL) Derivatives and Norms April 28 th 2015 17 / 24



Known Results

Let k ≤ m ≤ n.

‖D ∧m T‖ = pm−1(ν1, . . . , νm);

‖D ∨m T‖ = m‖T‖m−1 = mν1
m−1;

‖Dk ⊗m T‖ =
m!

(m − k)!
‖T‖m−k =

m!

(m − k)!
ν1

m−k ;

‖Dk ∨m T‖ =
m!

(m − k)!
‖T‖m−k =

m!

(m − k)!
ν1

m−k ;

‖Dk ∧m T‖ = k!pm−k(ν1, . . . , νm);

‖DKξ(T )‖ =
m∑
j=1

m∏
i=1
i 6=j

νω(ξ)(i).

where pm−k(x1, . . . , xm) is the elementary symmetric polynomial of degree
m − k .
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Partitions

The map Kξ(T ) has an associated irreducible character, and hence a
partition of m.

For x ∈ Cn and (π1, . . . , πm) ` m, α ∈ Γm,n, define

xα = (xα(1), . . . , xα(m))

ω(π) := (1, . . . , 1︸ ︷︷ ︸
π1 times

, 2, . . . , 2︸ ︷︷ ︸
π2 times

, . . . , l(π), . . . , l(π)︸ ︷︷ ︸
πl(π) times

) ∈ Γm,n.

Let Imα = {i1, . . . , il}, with |α−1(i1)| ≥ . . . ≥ |α−1(il)|.

µ(α) := (|α−1(i1)|, . . . , |α−1(il)|)

is called the multiplicity partition of α.

We have µ(ω(π)) = π and e∗α 6= 0 iff ξ majorizes µ(α).
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Main Theorems: G = Sm

Norm of DkKξ(T )

‖DkKξ(T )‖ = k! pm−k(νω(ξ))

For ξ ≡ 1, ξ = (m, 0, . . . , 0), ω(ξ) = (1, 1, . . . , 1).

For ξ = sgn, ξ = (1, 1, . . . , 1) and ω(ξ) = (1, 2, . . . ,m).

Norm of the derivative of the immanant

‖Dkdξ(A)‖ ≤ k! pn−k(νω(ξ))

Done for k = 1 by R. Bhatia and J. Dias da Silva.

The inequality becomes equality for ξ = sgn, and dξ = det.
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Steps of the proof

1 LetT = UP the polar decomposition of the operator T . First we
prove that ‖DkKχ(T )‖ = ‖DkKχ(P)‖. (unitarily invariance)

2 The map DkKχ(P) is multilinear and positive then its norm is
attained at (I , I , . . . , I ).

3 We calculate the largest singular value of DkKχ(P)(I , I , . . . , I ) that
equals the norm.

For step (2) we use the following theorem.(R. Bhatia and T. Jain)

Russo-Dye Multilinear version

Suppose Φ : Mk
n (C) −→ Ml(C) is a positive multilinear operator. Then

‖Φ‖ = ‖Φ(I , I , . . . , I )‖.
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General Case

When G is any subgroup of Sm this relation between partitions and
irreducible characters of G does not exist.

Definition

Suppose ξ is an irreducible character of G . The multilinearity partition of
the character ξ, MP(ξ), is the least upper bound of the partitions π of m
for which (ξ, χπ)G 6= 0.

When G = Sm, the multilinearity partition is the partition usually
associated with ξ.

Proposition

Suppose ξ is an irreducible character of G and let α ∈ Γm,n. If e∗α 6= 0,
then µ(α) � MP(ξ).
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Lemma

Let α, β be elements of ∆̂ ∩ Gm,n and π be a partition of m.

1 λ(α) ≥ λ(β) if and only if α precedes β in the lexicographic order.

2 If µ(α) � π then ω(π) precedes α in the lexicographic order.

Main Theorem

Let ξ be an irreducible character of G . Consider the map T → KG
ξ (T ).

Then
‖DkKξ(T )‖ ≤ k! pm−k(νω(MP(ξ)))

where pm−k is the symmetric polynomial of degree m − k in m variables,
ν1 ≥ . . . ≥ νn are the singular values of T and MP(ξ) the multilinearity
partition of ξ.
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