Generalized Matrix Functions

Sónia Carvalho, Pedro J. Freitas

UL-IPL

Seminário CEAFEL

SC (CEAFEL-ISEL)

Derivatives and Norms

April 28 th 2015 1 / 24

3

(日) (同) (三) (三)

Contents

Derivatives

- Generalized matrix function
- Formulas for higher order derivatives
- ξ symmetric tensor power
- Derivatives for operators
- Derivatives for matrices
- Norms
 - Known results
 - Case $G = S_m$
 - General case

3

Derivatives

SC (CEAFEL-ISEL)

Derivatives and Norms

April 28 th 2015 3 / 24

3

<ロ> (日) (日) (日) (日) (日)

Fréchet derivative

Let $A, X \in \mathbb{C}^{n \times n}$ and $f : \mathbb{C}^{n \times n} \to \mathbb{C}$. We define

$$Df(A)(X) := \left. \frac{d}{dt} \right|_{t=0} f(A+tX)$$

If $f(A) = \det A$, then we have the Jacobi formula

$$D \det(A)(X) = \operatorname{tr}(\operatorname{adj}(A)X),$$

where adj(A) is the transpose of the matrix of cofactors.

For the permanent, we have (R. Bhatia, P. Grover)

$$D \operatorname{per}(A)(X) = \operatorname{tr}(\operatorname{padj}(A)X)$$

where padj(A) is the transpose of the matrix of permanental cofactors.

Generalized matrix function

Let G be a subgroup of S_n and P a representation of G. A character of G is a map $\xi : G \mapsto \mathbb{C}$ afforded by the representation P defined as

$$\xi(\sigma) = \operatorname{tr} P(\sigma).$$

Definition

Let $A \in \mathbb{C}^{n \times n}$ and ξ a character of the subgroup G. The generalized matrix function determined by ξ and G is

$$d_{\xi}^{G}(A) = \sum_{\sigma \in G} \xi(\sigma) \prod_{i=1}^{n} a_{i\sigma(i)}.$$

This is a multinear map in the columns of the matrix A and a polynomial map in the matrix entries.

(日) (同) (三) (三)

Generalized matrix function

Suppose ξ is a irreducible character.

3

・ロト ・ 同ト ・ ヨト

Definitions

Suppose $k \leq n$, define:

- $\Gamma_{k,n}$: the set of all maps $\{1, \ldots, k\} \longrightarrow \{1, \ldots, n\}$.
- $G_{k,n}$: the set of increasing maps $\{1, \ldots, k\} \longrightarrow \{1, \ldots, n\}$.
- $Q_{k,n}$: the set of strictly increasing maps $\{1, \ldots, k\} \longrightarrow \{1, \ldots, n\}$.

For $f : \mathbb{C}^{n \times n} \to \mathbb{C}$, we define

$$D^k f(A)(X^1,\ldots,X^k) := \frac{\partial^k}{\partial t_1 \ldots \partial t_k} \Big|_{t_1=\ldots=t_k=0} f(A+t_1X^1+\ldots+t_kX^k).$$

If f is multilinear this derivative is the coefficient of $t_1 \dots t_k$ in the polynomial $f(A + t_1X^1 + \dots + t_kX^k)$.

Formula (1) for the *k*-th derivative

Let $\alpha \in Q_{k,n}$. Define $A(\alpha; X^1, \ldots, X^k)$ as the matrix of order *n* obtained from *A* by replacing the $\alpha(j)$ column of *A* by the $\alpha(j)$ column of X^j .

First expression
For every
$$1 \le k \le n$$
,
 $D^k d_{\xi}^G(A)(X^1, ..., X^k) = \sum_{\sigma \in S_k} \sum_{\alpha \in Q_{k,n}} d_{\xi}^G A(\alpha; X^{\sigma(1)}, ..., X^{\sigma(k)}).$

Already known for $d_{\xi} = \det$, per (R. Bhatia, T. Jain, P. Grover).

Formula (1), rewritten

Define the mixed generalized matrix function of X^1, \ldots, X^n as

$$\Delta_{\xi}^{G}(X^{1},\ldots,X^{n}) := \frac{1}{n!} \sum_{\sigma \in S_{n}} d_{\xi}^{G}(X_{[1]}^{\sigma(1)},\ldots,X_{[n]}^{\sigma(n)}).$$

where $Y_{[i]}$ is the *i*-th column of Y. For k < n, we abbreviate $\Delta_{\xi}^{G}(A, \dots, A, X^{1}, \dots, X^{k})$ by $\Delta_{\xi}^{G}(A; X^{1}, \dots, X^{k})$.

First expression, rewritten

$$D^k d^G_{\xi}(A)(X^1,\ldots,X^k) = rac{n!}{(n-k)!} \Delta^G_{\xi}(A;X^1,\ldots,X^k).$$

< ロト < 同ト < ヨト < ヨト

Derivatives of the ξ -symmetric power

SC (CEAFEL-ISEL)

3

-

Image: A match a ma

The ξ -symmetric tensors

Let V be a finite-dimensional vector space with inner product and consider its *m*-fold tensor power $\otimes^m V$. Define the ξ symmetriser:

$$T(G,\xi) = rac{\xi(\mathsf{id})}{|G|} \sum_{\sigma \in G} \xi(\sigma) P(\sigma),$$

where $P(\sigma)(v_1 \otimes \ldots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(m)}$.

The range of $T(G,\xi)$, denoted $V_{\xi}(G) \leq \bigotimes^m V$ is called the ξ -symmetric class of tensors.

- For $\xi \equiv 1$, we get symmetric tensors.
- For $\xi = \text{sgn}$, we get anti-symmetric tensors.

$$v_1 * v_2 * \ldots * v_m = T(G,\xi)(v_1 \otimes v_2 \otimes \ldots \otimes v_m).$$

These vectors are called decomposable symmetrised tensors.

SC (CEAFEL-ISEL)

イロト 不得 トイヨト イヨト 二日

The ξ -symmetric tensor power of T

Given $T_1, \ldots, T_m \in L(V)$, the space $V_{\xi}(G)$ is invariant for the operator

$$T_1 \tilde{\otimes} \cdots \tilde{\otimes} T_m := \frac{1}{m!} \sum_{\sigma \in S_m} T_{\sigma(1)} \otimes \cdots \otimes T_{\sigma(m)}$$

We denote its restriction to $V_{\xi}(G)$ as $T_1 * \cdots * T_m$.

For $T \in L(V)$, define the ξ -symmetric tensor power of T as

$$K_{\xi}^{G}(T) = (\otimes^{m} T)|_{V_{\xi}(G)} = \underbrace{T * T * \cdots * T}_{m \text{ times}}$$

Now we establish a formula for the directional derivative of the map $K_{\xi}^{G} : L(V_{\xi}(G)) \to L(V_{\xi}(G)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Formula for the derivative of K_{ξ}^{G}

Derivative for operators $\otimes^m T$

$$D^k \otimes^m T(X_1, \ldots, X_k) = \frac{m!}{(m-k)!} \underbrace{\mathcal{T} \widetilde{\otimes} \cdots \widetilde{\otimes} \mathcal{T}}_{m-k \text{ times}} \widetilde{\otimes} X_1 \widetilde{\otimes} \cdots \ast \widetilde{\otimes} X_k$$

Known for \lor , \land (Bhatia, Grover, Jain) We have proved that:

Derivative for operators

$$D^{k} \mathcal{K}_{\xi}^{G}(T)(X_{1},\ldots,X_{k}) = \frac{m!}{(m-k)!} \underbrace{\mathcal{T}*\cdots*\mathcal{T}}_{m-k \text{ times}} * X_{1}*\cdots*X_{k}$$

What about for matrices?

イロト 不得下 イヨト イヨト 二日

Bases

In general, $V_{\xi}(G)$ does not have an orthonormal basis formed by decomposable symmetrised tensors.

Recall that $\Gamma_{m,n}$ is the set of all maps $\{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$. Take $\{e_1, \ldots, e_n\}$ an o.n. basis of V, and, for $\alpha \in \Gamma$, define

$$e_{\alpha}^* := e_{\alpha(1)} * \ldots * e_{\alpha(m)}.$$

Take

E': the basis of V_ξ(G) formed by elements of the from e^{*}_α, with indexing set Â:

$$\mathcal{B} = \{ \mathbf{e}^*_{\alpha} : \alpha \in \widehat{\Delta} \subseteq \Gamma_{m,n} \}.$$

- *E*: the orthonormal basis of V_ξ(G) obtained by applying the Gram-Schmidt process to *E'*,
- B: the change of basis matrix from *E* to *E'* does not depend on the original basis of *V*.

SC (CEAFEL-ISEL)

Formula for the derivative of $K^G_{\xi}(A)$

Derivative for operators

$$D^k K^G_{\xi}(T)(X_1,\ldots,X_k) = \frac{m!}{(m-k)!} \underbrace{T*\cdots*T}_{m-k \text{ times}} *X_1*\cdots*X_k$$

Using the bases, it is possible to define $K_{\xi}^{G}(A)$ for a matrix A.

Denote by mixgmm^G_{\xi}($A; X^1, \ldots, X^k$) the matrix indexed by $\widehat{\Delta}$ whose (γ, δ) entry is $\Delta^{G}_{\xi}(A[\gamma|\delta]; X^1[\gamma|\delta], \ldots, X^k[\gamma|\delta])$.

Derivative for matrices

$$D^{k} \mathcal{K}^{\mathcal{G}}_{\xi}(A)(X^{1},\ldots,X^{k}) = \frac{\xi(id)m!}{|\mathcal{G}|(m-k)!}B^{*}\operatorname{mixgmm}_{\xi}(A;X^{1},\ldots,X^{k})B.$$

イロト 不得下 イヨト イヨト 二日

Norms

SC (CEAFEL-ISEL)

- 2

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Two results

Definition

The norm of a multilinear operator Φ is given by

$$\|\Phi\| = \sup_{\|X^1\|=\ldots=\|X^k\|=1} \|\Phi(X^1,\ldots,X^k)\|.$$

We want to estimate $||D^k f(T)||$.

- When $G = S_m$ we calculate the exact value for the norm considering $f(T) = K_{\xi}(T)$.
- **2** When G is a subgroup of S_m we obtain an upper bound for the norm when $f(T) = K_{\xi}^{G}(T)$.

(日) (周) (三) (三)

Known Results

Let
$$k \le m \le n$$
.
• $\|D \wedge^m T\| = p_{m-1}(\nu_1, \dots, \nu_m);$
• $\|D \vee^m T\| = m\|T\|^{m-1} = m\nu_1^{m-1};$
• $\|D^k \otimes^m T\| = \frac{m!}{(m-k)!}\|T\|^{m-k} = \frac{m!}{(m-k)!}\nu_1^{m-k};$
• $\|D^k \vee^m T\| = \frac{m!}{(m-k)!}\|T\|^{m-k} = \frac{m!}{(m-k)!}\nu_1^{m-k};$
• $\|D^k \wedge^m T\| = k!p_{m-k}(\nu_1, \dots, \nu_m);$
• $\|DK_{\xi}(T)\| = \sum_{j=1}^m \prod_{i=1 \atop i \neq j}^m \nu_{\omega(\xi)(i)}.$

where $p_{m-k}(x_1, \ldots, x_m)$ is the elementary symmetric polynomial of degree m - k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Partitions

The map $K_{\xi}(T)$ has an associated irreducible character, and hence a partition of *m*.

For $x \in \mathbb{C}^n$ and $(\pi_1, \ldots, \pi_m) \vdash m$, $\alpha \in \Gamma_{m,n}$, define

$$\begin{aligned} x_{\alpha} &= (x_{\alpha(1)}, \dots, x_{\alpha(m)}) \\ \omega(\pi) &:= (\underbrace{1, \dots, 1}_{\pi_1 \text{ times}}, \underbrace{2, \dots, 2}_{\pi_2 \text{ times}}, \dots, \underbrace{l(\pi), \dots, l(\pi)}_{\pi_{l(\pi)} \text{ times}}) \in \Gamma_{m,n}. \end{aligned}$$

et Im $\alpha = \{i_1, \dots, i_l\}$, with $|\alpha^{-1}(i_1)| \ge \dots \ge |\alpha^{-1}(i_l)|$.
 $\mu(\alpha) &:= (|\alpha^{-1}(i_1)|, \dots, |\alpha^{-1}(i_l)|)$

is called the multiplicity partition of α .

We have $\mu(\omega(\pi)) = \pi$ and $e_{\alpha}^* \neq 0$ iff ξ majorizes $\mu(\alpha)$.

▲ 同 ▶ → 三 ▶

Main Theorems: $G = S_m$

Norm of $D^k K_{\xi}(T)$

$$\|D^k K_{\xi}(T)\| = k! p_{m-k}(\nu_{\omega(\xi)})$$

• For
$$\xi \equiv 1$$
, $\xi = (m, 0, ..., 0)$, $\omega(\xi) = (1, 1, ..., 1)$.
• For $\xi = \text{sgn}$, $\xi = (1, 1, ..., 1)$ and $\omega(\xi) = (1, 2, ..., m)$.

Norm of the derivative of the immanant

$$\|D^k d_{\xi}(A)\| \leq k! p_{n-k}(\nu_{\omega(\xi)})$$

Done for k = 1 by R. Bhatia and J. Dias da Silva.

The inequality becomes equality for $\xi = \text{sgn}$, and $d_{\xi} = \text{det}$.

Steps of the proof

- Let T = UP the polar decomposition of the operator T. First we prove that $||D^k K_{\chi}(T)|| = ||D^k K_{\chi}(P)||$. (unitarily invariance)
- **2** The map $D^k K_{\chi}(P)$ is multilinear and positive then its norm is attained at (I, I, \dots, I) .
- We calculate the largest singular value of D^kK_χ(P)(I, I, ..., I) that equals the norm.

For step (2) we use the following theorem.(R. Bhatia and T. Jain)

Russo-Dye Multilinear version

Suppose $\Phi: M_n^k(\mathbb{C}) \longrightarrow M_l(\mathbb{C})$ is a positive multilinear operator. Then

$$\|\Phi\| = \|\Phi(I, I, \ldots, I)\|.$$

イロト 不得 トイヨト イヨト 二日

General Case

When G is any subgroup of S_m this relation between partitions and irreducible characters of G does not exist.

Definition

Suppose ξ is an irreducible character of G. The multilinearity partition of the character ξ , MP(ξ), is the least upper bound of the partitions π of m for which $(\xi, \chi_{\pi})_G \neq 0$.

When $G = S_m$, the multilinearity partition is the partition usually associated with ξ .

Proposition

Suppose ξ is an irreducible character of G and let $\alpha \in \Gamma_{m,n}$. If $e_{\alpha}^* \neq 0$, then $\mu(\alpha) \preceq MP(\xi)$.

イロト 不得下 イヨト イヨト 二日

Lemma

Let α, β be elements of $\widehat{\Delta} \cap G_{m,n}$ and π be a partition of m.

• $\lambda(\alpha) \ge \lambda(\beta)$ if and only if α precedes β in the lexicographic order.

2 If $\mu(\alpha) \leq \pi$ then $\omega(\pi)$ precedes α in the lexicographic order.

Main Theorem

Let ξ be an irreducible character of G. Consider the map $T \to K_{\xi}^{G}(T)$. Then

$$\|D^{k} \mathcal{K}_{\xi}(T)\| \leq k! \, p_{m-k}(\nu_{\omega(\mathrm{MP}(\xi))})$$

where p_{m-k} is the symmetric polynomial of degree m-k in m variables, $\nu_1 \ge \ldots \ge \nu_n$ are the singular values of T and $MP(\xi)$ the multilinearity partition of ξ .

Bibliography

- R. Bhatia, J. A. Dias da Silva, Variation of induced linear operators, *Linear Algebra and its Applications*, 341 (2002) 391–402.
- R. Bhatia, S. Friedland, Variation of Grassman powers and spectra, *Linear Algebra and its Applications*, 40 (1981) 1–18.
- R. Bhatia, P. Grover, T. Jain, Derivatives of tensor powers and their norms, *Electronic Linear Algebra*.
- S. Carvalho, P. J. Freitas, The k-th derivatives of the immanant and the *χ*-symmetric power of an operator, *The Electronic Journal of Linear Algebra.*, 19 (2014).
- S. Carvalho, P. J. Freitas, The norm of the *k*-th derivative of the χ -symmetric power of an operator, *The Electronic Journal of Linear Algebra*, 19, (2014).
- T. Jain, Derivatives for antisymmetric tensor powers and perturbation bounds *Linear Algebra and its Applications*, 435 (2011) 1111–1121.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >