ADE GEOMETRY AND DUALITIES

Sheldon Katz
Lecture 2
ADE QUIVER REPRESENTATIONS AND BRANES

We return to the situation in the first lecture

Z = Z = Xx,V - X

\J Nod \J
C — v 4 viw,
together with
Z = X
N
C

where certain curves in Z are contracted to obtain X. In this lecture, we
describe how these curves can be identified with representations of certain
quivers with relations.

These quivers originate from certain N = 1 gauge theories arising from
wrapped branes on the the cycles Szt in string theory. The relations on the
quiver come from the superpotential (F-term constraints).

Rather than explain in detail the physical origins of the particular quivers
and relations, we for the most part content ourselves with writing down
the quivers and relations, and explaining how this matches the geometry of
contractible curves precisely.

A quiver is a directed graph, consisting of a set V of vertices and a set £
of directed edges. An edge e € £ is oriented from its initial vertex i(e) € V
to its final vertex f(e) € V.

Let’s consider a particular ADE singularity S and its associated Dynkin
diagram. We construct a quiver from this Dynkin diagram. This is not the
same as the quivers constructed by picking an orientation of each edge.

The set V of vertices of the quiver coincides with the set of vertices of the
Dynkin diagram.

To each edge e of the Dynkin diagram connecting two vertices v;, v;, we
associate two edges of the quiver connecting v; and vj, one in each direction.
That is, an edge €' € £ with i(¢') = v; and f(€') = v;, together with an edge
¢ € € with i(e") = v; and f(e") = v;.
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Finally, for each vertex v of the Dynkin diagram there is an edge e, with

i(ey) = fle,) =v.
This quiver will be called an N = 2 ADFE quiver after its physical origin.

Definition. A representation of a quiver described by V, &, is the assign-
ment of a vector space W, to each v € V and for each edge e € £ a linear
transformation Q(e) € Hom(Wj(), Wje))-

For example, if a traditional ADE quiver is constructed from the Dynkin
diagram by choosing one orientation for each edge, then its simple represen-
tations are in 1-1 correspondence with the positive roots of S. IfC = > n;C;
is such a root, then in the corresponding quiver representation we have
dim W; = n;. This is part of the content of Gabriel’s theorem.

In the N = 2 ADE quiver, the vertices will be labelled by 1,...,n, and
if e is an edge with i(e) =i and f(e) = j, then we will usually rewrite the
linear tranformation Q(e) as Qj;. If e; is the edge with i(e;) = j(e;) = ¢, then
we will usually rewrite the linear tranformation Q(e;) as ;.

In string theory, wrapping N; branes on S}, gives an N = 1 [[; U(IV;)
gauge theory. This corresponds to a representation of the N = 2 ADE
quiver with V; = dim W; for each i. The Q);; are bifundamental fields in the
(N;, N;) representation, and the ®; are U(V;) adjoints.

We now impose relations on the quiver representations corresponding to
the breaking to N = 1 supersymmetry in the physical theory. For each
i # j €V we choose s;; such that

si; = 0 if there is no edge connecting i, j
s;; = £1 if there is an edge connecting i, j
Sij = —8ji

Furthermore, the map C — V can be written as «;(t) = P/(w) for i =
1,...,n. Then the relations imposed are

Z 5ijQjiQij + P;(®;), Qij®; = Q-
These relations in fact are the critical points of the superpotential
W(Qij, ®i) =) _ 51 TrQi;®;Q;: + TrP)(®)
For A,, the relations can be written as
—Qii1Qi1,i + Qiiy1Qiy1,: + P (@) = 0, Qi P = D:Qy;.
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A, Example. We since the map C — V is described by t; = f;(w) for
1=1,2,3 with }_ f; = 0, and we have

Ckl(t) = tl - tQ, Odg(t) = t2 - tg
we put

Pi(w) = fi(w) = fo(w),  P3(w) = fa(w) — fs(w).

The relations are
Q12Qo1 + P{(®1) = 0

—@Q21Q12 + Py(®3) = 0
Q122 = &1Q12
QRQu® = Q2

Then we get three classes of simple quiver representations satisfying the
required relations.

W1:C7 WQZOJ Q12:Q21:®2:07 le)\'[7 (fl_f2)()\):0

Wi=0, We=C, Qi2=0Qa1 =P =0, Do =\-1, (fo=f3)(A) =0
Wi=Wy=C, Qiza=1, Q2 = (fz—f?,)()\)'I, Q= Py = A1, (.fl_f3)(/\) = 0.

To derive these representations, first look for representations where the
Qi; = 0. This requires only (f; — f2)(®1) =0, (f2 — f3)(®2) = 0. We then
see that the only simple representations are those described in the first two
classes above. If either f; — fo or fo — f3 has multiple roots, then there may
be other indecomposible (but not simple) quiver representations satisfying
the required relations, e.g. putting W; = C2?, W, = 0 and taking

oe(3 1)
with (f; — f2)(\) = 0.

To derive the third class of representations, multiply the first relation by
()21 on the left and by Q)12 on the right, and use the third relation to obtain

Q21Q12Q21 Q12 + Q21Q12 P () = 0.

Putting X159 = ()21Q12, this can be written more simply as

X12 (X12 + PII(CI)Q)) = 0
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The second relation now gives X = Pj(®,), so we arrive at the identity
B (®2) (P + P) (@) = 0.

A similar argument gives
P{(®1) (P + P3) (@) = 0.

Since (P{+ Pj)(w) = (f1— f3)(w), the construction is readily completed from
here.

Back to the general case, we introduce some more notation. Given a
positive root C, we express it as C' = > n;C; with n; > 0. Then we define
the function PL(w) =3 n;P}(w).

For example, in the Ay case we have Pf, ¢, (w) = (fi — fo)(w) + (f2 —
f3)(w) = (fr — f3)(w).

Now suppose that all roots of Pp(w) = 0 are simple, and that given two
roots Ry # Ry in the root system, the set of roots of P/(w) = 0 is disjoint
from the set of roots of Pj(w) = 0.

Assertion. The isomorphism classes of N = 2 ADE quiver representations
satisfying the given relations together with their morphisms form a semisim-
ple category, and the exceptional curves of Z — X are in 1-1 correspondence
with the simple representations.

This was explained using D-branes in [CKV], with illustrative examples.
I expect that a complete proof will follow soon using an extension of the
reflection functors associated to elements of the Weyl group as were used
to prove Gabriel’s theorem. An important point is that like the classical
case, reflections construct new N = 2 quiver representations from old ones,
but the relations are not preserved. Instead a different set of relations is
satisfied, arising from the flop of Z along the corresponding curve. This is
being completed by my thesis student X. Zhu. In the case of more general
P!, the indecomposable quiver representations correspond to certain sheaves
supported on the exceptional curves.

Now we turn to the general case

Y - YV = Xx,V/W —- X
l ¢ l \
C — v/iw' A v,
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together with the contraction

Y —
N\

Q<+

We let I index the vertices of the Dynkin diagram corresponding to the
curves that are blown up to obtain S. The complementary set of vertices
will be denoted by J. The reflections corresponding to the C; with j € J
generate W'. A map

C—-V/wW

can be given explicitly by choosing generators (i,..., 3, for the algebra of
W!'-invariant functions on V' and putting

512_][‘1(’!1)), izlv"'an

for some holomorphic functions f; on C.

We now describe a quiver and relations for this situation. The vertices
are the set 1. We have two edges between 7 and j whenever ¢ and j were
adjacent in the original Dynkin diagram. We still have an edge e; with
i(e;) = f(e;) =i for each i € I. Finally, for each i € I and each edge j € J
adjacent to ¢ in the original Dynkin diagram, we add another edge ej; from
1 t0 1.

In a representation, the linear transformations corresponding to the above
classes of edges in order will be denoted by

Qji € Hom(W;, W;), ®; € Hom(W;, W;), X,; € Hom(W;, W;).

For the contractions Z — X, the relations can be derived by a simple
substitution in terms of a universal relation given by an ideal R in the algebra

C{Qu, 2} [V7]
e.g.
R = (—Qii-1Qi-1, + Qii+1Qit1,; + ti — tit1, Qi;®; — PiQy5)

in the A, case. We obtain a relation in Hom(W;, W;) from an element of
r € R beginning and ending at node 7 by substituting ¢; — t;1, = f;(®;) for
all j.



_ Given any polynomial functions p;; on V', we can form shifted operators
Xij = XZ] +p” and then map

C{Xi;, Qi;}[V*] C C{Qij, B}V, Xij = QjiQij + pij

and put 3
R' = RNC{Xy, Qi }[V]".

Assertion. There exist linear functions p;; such that in the generic case,
the quiver representations together with their morphisms form a semisimple
category, and the exceptional curves of ¥ — X are in 1-1 correspondence
with the simple representations.

A more general assertion can be made in all cases, involving sheaves
supported on the exceptional curves.

Example.

A,y with only the second vertex blown up. We have one vertex and two edges,
whose representations are labeled by ®, and X;5. We choose coordinates
t =tz and 0 = tity on V/W' W' = (1,2) C Ss.

The second relation imposed on the full quiver can be rewritten as — X5+
Py(®,) =0, s0 —X19+ty—t3 € R. Furthermore, from what we have computed
before, X12 (X12 + tl — t2) €R.

Putting X'n = X9 — 19, these elements of R can be rewritten as

— X —t3 = —X19 — t, <X12+t1) (Xm-i-tz) =X122—tX12+0

which are clearly W’ -invariant and so give elements of R'.
A threefold can be constructed by substituting ¢t = f;(w), o = fo(w) for
some functions f;, fo. The equation of X in C* is then

zy + (2 + fi(w) (2" = fi(w)z + fo(w)) =0,

and Y is obtained from X by blowing up the ideal (z, 2% — fi(w)z + fo(w)).
So the only exceptional curves appear over the locus in X given by z =y =
2?2 — fi(w)z + fo(w) = 2 + fi(w) = 0. These last two equations imply

e==filw),  fo(w)+2(fi(w) =0.

From the elements of R’ given above, the quiver represention has to satisfy

—Xu — fi(®2) =0, X122 - fl((bQ)XlQ + fo(®2) = 0.
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These coincide with the geometric equations for the exceptional curves after
an obvious change of variables. The simple quiver representations clearly
arise by choosing A to be a solution of ( fo+2f7)(w) = 0 for w, and then taking
a representation with Wy = C and maps Xo; = —f1(A) -1 and &5 = X - 1.
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