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Introduction

It is a central question in knot theory to decide if, given two knots, one can be
smoothly transformed into the other, without cutting or creating intersections.
When such a transformation is possible, we say the two knots are equivalent.

It can be very difficult to answer this question. However, over the years,
many knot invariants have been discovered which can distinguish some knots. It
is known, for example, that the fundamental group π1(CK) of the complement of
the knot CK is a strong knot invariant, since equivalent knots have isomorphic
knot groups. But it is not complete: for example it can’t distinguish the trefoil
and its mirror image.

Recently, Eisermann constructed an invariant E(K) that is close to a com-
plete invariant. In section 2 this invariant is explained and in section 3 we con-
struct its lifting, following [2]. Lastly, in section 4 we present some examples that
show that the lifting is indeed a stronger invariant.

1 Basic Concepts

First of all, we have to define what a knot is. Intuitively, we can construct
a knot by holding a piece of string, randomly arranging it and gluing the end
points together. More formally,

Definition 1. A knot K is an embedding of the circle S1 in R3.

A knot can be represented by a knot diagram, which is simply the projection
of the knot onto the plane in such a way that you can visualize if the crossings
are undercrossing or overcrossings. There can be multiple knot diagrams for the
same knot, which are related by the Reidemeister moves, presented in figure 1:
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Fig. 1: Reidemeister Moves I, II and III

The Reidemeister moves correspond to the three quandle axioms, respec-
tively, described as follows:

Definition 2. A quandle is a set X with an operation B that satisfies:

1. xB x = x

2. ∀x, y ∈ X ∃!z ∈ X : y = xB z

3. xB (y B z) = (xB y)B (xB z), ∀x, y, z ∈ X

Hence, if we label the arcs of a knot diagram with elements of a quandle such
that at each crossing the relation seen in figure 2 holds, then there is a one-to-
one correspondence between the quandle colourings of two knot diagrams related
by a Reidemeister move. Thus, in particular, the number of quandle colourings
using a finite quandle is a knot invariant.

Fig. 2: Quandle colouring of a crossing on a link diagram

Let K be an oriented knot in S3 and CK = S3 \ n(K) be its complement,
where n(K) is a normal neighbourhood of K. The fundamental group of the
complement π1(CK) is known as the knot group of K and is a strong invariant.
Note that the knot group is independent of the orientation of the knot.

Given a knot diagram D, each arc defines a generator of the knot group’s
presentation, and each crossing defines a relation. This is called the Wirtinger
presentation of the knot group and is fundamental to our construction.

3
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2 The Eisermann Invariant

Given a knotK, we can define a long knot, LK , by cutting the knot at a point
p ∈ K and extending the end points to + and - infinity, respectively. Long knots
obtained by choosing different cutting points are isotopic, and so LK depends
only on K.

We can define two special elements in the knot group: meridian and longi-
tude. For any arc a of the knot diagram D and for any point q in a, the meridian
is simply a loop around a at q, and whose direction is given by the right hand
rule. For the long knot LK take the meridian mK to be the meridian around any
point of the incoming arc, which is clearly homotopic to the meridian around
any point of the the outgoing arc. The knot longitude lK on the other hand, has
linking number 0 with the knot and is mostly parallel to LK . For a better under-
standing, in figure 3 1 the longitude and meridian elements are represented for
the long knot associated to the trefoil knot. For a more formal definition see [1,2].

Fig. 3: Meridian and longitude for a long knot (trefoil)

Up to isomorphism, the triple (π1(CK), lK ,mK), called the peripheral sys-
tem, is a complete knot invariant. The Eisermann invariant, even though it’s not
known to be complete, can capture some information about the peripheral sys-
tem. Roughly speaking, the invariant is obtained by colouring the arcs of a knot
diagram of K with elements of a finite group G associated with the meridian
and the partial longitude of that arc.2 The relations between these assignments
are governed by a quandle, the Eisermann quandle, which depends on the choice
of x ∈ G associated to the meridian mK . Finally, we register the elements in G
associated to the longitude lK .

Since the longitude lK is an element of π1(CK), it can be written in terms
of the Wirtinger generators in the following way: considering LK , we can name
1 Image taken from [1]
2 The partial longitude is like the knot longitude, but following the knot only as far
as the arc in question
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the arcs of the knot diagram a0, a1, ..., an, where a0 is the first arc, that contains
the base point p, and the other arcs are obtained by going along the knot in the
direction of its orientation. To each arc ai we can associate a partial longitude
li, thus lK = ln.

Let gai be the element of π1(CK) corresponding to ai, that is, the meridian
which encircles the arc ai. Then, at each crossing, the following relations hold:

X+ : li+1 = lig
−1
ai gaj X− : li+1 = ligaig

−1
aj

Let G be a group. Recall that the commutator of two elements g, h ∈ G is
[g, h] = ghg−1h−1 ∈ G. For future reference, the commutator subgroup of G,
denoted G′, is the subgroup of G generated by all the commutators of the group.

Let θi be the sign of the i-th crossing and ji the number of the arc that splits
ai and ai+1. By algebraic manipulation, for k ∈ {2, ..., n}, we get:

lk =

k−1∏
i=1

[l−1i , g−θia1 ][g−θia1 , l−1ji ]

Hence the partial longitudes lk and the longitude lK belong to the commutator
subgroup of π1(CK). Also, [mK , lK ] = 1.

Given a finite group G, let f : π1(CK) → G be a group morphism. Hence,
f(lK) ∈ G′ and [f(lK), f(mK)] = 1G. Therefore, denoting f(mK) = x and C(x)
the group of elements in G that commute with x, we get that

f(lK) ∈ Λ = G′ ∩ C(x)

Finally, the Eisermann Invariant is given by:

E(K) =
∑

{f :π1(CK)→G : f(mK)=x}

f(lK) ∈ Z[G]

3 The Lifting of the Eisermann Invariant

Even though the invariant we just discussed is very strong, there is more
information in CK , the complement of K, which the Eisermann invariant can’t
capture, and as we’ll see, the lifting can.

The main idea is to colour the arcs of the knot diagram with elements of a
finite group G, as before, but also colour each crossing with an element of a finite
group E. We do this in such a way that the colour of the crossing is determined
by the colour of the two arcs.

5
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Definition 3. A crossed module of groups, G = (∂ : E → G,B), is given by:

– a group morphism ∂ : E → G

– a left action B of G on E by automorphisms (i.e. gB(e1e2) = (gBe1)(gBe2)
and g B 1 = 1)

such that the Peiffer equations hold:

1. ∂(g B e) = g∂(e)g−1 ∀g ∈ G, ∀e ∈ E
2. ∂(e)B f = efe−1 ∀e, f ∈ E

Recall the definition of left action:

Definition 4. Let G be a group and X a set. The left group action B of G on
X is a function B : G×X → X given by (g, x) 7→ g B x and satisfying:

1. eB x = x ∀x ∈ X
2. (gh)B x = g B (hB x) ∀g, h ∈ G, ∀x ∈ X

Definition 5. Given a crossed module G = (∂ : E → G,B), the monoidal
category C(G) is a category whose set of objects is G and whose morphisms from
U ∈ G to V ∈ G are given by all pairs (U, e), e ∈ E such that ∂(e) = V U−1.

We can see these morphisms as pointing arrows U e−→ V and/or squares 3:

The composition of morphisms (U e−→ V ) ◦ (V f−→ W ) is defined as U fe−→ W
and the monoidal structure ⊗ is expressed as

– U ⊗ V = UV , on objects and

– (U
e−→ V )⊗ (U ′

e′−→ V ′) = UU ′
(VBe′)e−−−−−→ V V ′, on morphisms.

In the square notation, the operations on morphisms are equivalent to:

3 Figures taken from [2]
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Fig. 4: Operations on morphisms of C(G) in square notation

These two operations satisfy the interchange law ie

((U
e−→ V )⊗ (U ′

e′−→ V ′)) ◦ ((V f−→W )⊗ (V ′
f ′

−→W ′)) =

= ((U
e−→ V ) ◦ (V f−→W ))⊗ ((U ′

e′−→ V ′) ◦ (V ′ f
′

−→W ′))

For the following construction we use tangles, which are a generalization
of braids and knots. We refer to [2] for the definition and some useful details.
Analogously to knots, we can represent a tangle by a tangle diagram.

Definition 6. Given a crossed module G = (∂ : E → G,B) and an oriented
tangle diagram D, a G-colouring of D is an assignment of an element of G to
each arc of D and of an element of E to each crossing of D, such that at each
crossing the following relations hold:

X+ : ∂(e) = XYX−1Z−1 X− : ∂(e) = Y XZ−1X−1 (1)

Thus we are assigning to each coloured crossing of D a morphism of C(G).
The morphisms of C(G) associated to the elementary G-coloured tangles can be
seen in [2]. By using monoidal product horizontally and composition vertically,
we can assign a morphism of C(G) to the complete G-colouring of D, denoted F .
This morphism, e(F ), is the evaluation of F .

In order for the element e ∈ E associated to each crossing to be determined
by the colours of the arcs, we define two functions, one for each type of crossing,
which determine the E-colouring:

7
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X+ : ψ : G×G→ E X− : φ : G×G→ E

Substituing in (1), these functions then determine the remaining arc Z ∈ G:

X+ : Z = ∂(ψ(X,Y ))−1XYX−1 X− : Z = X−1∂(φ(X,Y ))−1Y X (2)

Since the knot diagrams are equivalent under the Reidemeister moves, it is
important that φ and ψ satisfy some relations, defined as follows:

Definition 7. The pair Φ= (ψ, φ) is said to be an unframed Reidemeister pair
if ψ : G × G → E and φ : G × G → E satisfy the following three relations for
each X,Y, T ∈ G:

– R1: ψ(X,X) = 1E

– R2: φ(X,Y )ψ(X,Z) = 1E

with Z = X−1∂(φ(X,Y ))−1Y X

– R3: φ(Y,X).Y B φ(T,Z).φ(T, Y ) = X B φ(T, Y ).φ(T,X).T B φ(V,W )

with Z = Y −1∂(φ(Y,X))−1XY ,
V = T−1∂(φ(T, Y ))−1Y T and
W = T−1∂(φ(T,X))−1XT

Example 1. Let G′ be the commutator subgroup of G and g, h ∈ G′. The pair
Φx = (ψx, φx) given by

φx(g, h) = [hx−1, gx−1] ψx(g, h) = [g, h][hg−1, x] (3)

is an unframed Reidemeister pair for the crossed module G′ id−→ G′, with G′ act-
ing on itself by conjugation. Also, Φ corresponds to the quandle underlying the
Eisermann invariant. These statements are proved in [2].

Hence, we can refine the definition of G-colouring of a knot diagram D by
choosing a Reidemeister pair Φ= (ψ, φ) and fixing the colours at each crossing
as in (2). We name this colouring a Reidemeister G-colouring of D and with it
we define the state sum, as follows.

8
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Definition 8. Consider a crossed module G = (∂ : E → G,B), G a finite group,
provided with a unframed Reidemeister pair Φ= (ψ, φ). Let D be an oriented
G-enhanced tangle diagram D connecting the words w and w′ in G t G∗. We
define the state sum:

IΦ(D) =
∑

F∈CΦ(D,w,w′)

e(F )

where CΦ(D,w,w′) is the set of Reidemeister G-colourings of D.
Note that IΦ(D) ∈ N[HomC(G)(e(w), e(w′))], where HomC(x, y) denotes the

set of morphisms x→ y in the category C.

It [2] it is proved that IΦ(D) is indeed a invariant of G-enhanced tangles if Φ
is an unframed Reidemeister pair. Moreover, this invariant includes all rack and
quandle cohomology invariants, as well as the Eisermann invariant.

4 New Achievements

With both the Eisermann invariant and the lifting explained, we now wish
to find examples that confirm that the latter is indeed a stronger invariant. To
do so, the open-source software SageMath and GAP were used.

Recall that the knot group is independent of the orientation of the knot
and of the 3-dimensional space it is embedded in. However, the longitude and
meridian are not, and these symmetries affect the system group as stated in [1]:
if π(K) = (πK ,mK , lK), then

obversion : π(K×) = (πK ,m
−1
K , lK)

reversion : π(K !) = (πK ,m
−1
K , l−1K )

inversion : π(K∗) = (πK ,mK , l
−1
K )

Intuitively, obversion corresponds to mirror image and reversion to change
of orientation of the knot.

We started by analyzing the trefoil knot, which is non-invertible, and then
moved on to more complex knots: 51, which is also non-invertible, and 817, which
is non-reversible.

It is known that any knot K is the closure of a braid β and in [1] Eisermann
remarks that the symmetry operations on braids correspond to the symmetry
operations on knots i.e. the inverse braid β−1 represents the inverse knot K∗
and the reverse braid β! represents the reverse knot K !.

Let β be a braid with n strings. We can assign a braid word to β which
uniquely identifies it, although equivalent braids may have different braid words.
The braid word associated to β is given by i0...ik, where ij ∈ {1, ..., n − 1}
represents a crossing with the sign of ij between the ij-th and ij + 1-th strings,
∀j ∈ {0, ..., k}. Moreover, −i0... − ik and ik...i0 are the braid words related to
β−1 and β!, respectively.

9
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With this in mind, after choosing a finite group G and having the braid β
corresponding to K and β1 corresponding to K∗, in the case of the trefoil and
51, or K !, in the case of 817, we labelled one end of the braids with elements of
G and computed with (2) and (3) the labels at the other end of the braids. Since
we are considering long knots, we have to impose that for each braid all the end
points except the left one are equal pairwise. This way, we get F , a Reidemeister
G-colouring of the diagram. Finally, by computing the evaluation of F , by the
operations on figure 4, we easily get the values of the lifting.

Consider a central extension of groups {0} → A→ E
∂−→ G→ {1}, where G

is a finite group and ∂ : E → G is a surjective map, such that the kernel of ∂
is central in E. Given an arbitrary section s : G → E of ∂, that is, ∂(s(g)) =
g, ∀g ∈ G, we get a crossed module of groups (∂ : E → G,B), with left action
g B e = s(g) e s(g)−1. This action is independent of the section s.

4.1 The Trefoil Knot: 31

Let K+ and K− be the trefoil and its mirror image, whose braid representa-
tion are as seen in figure 5.

Fig. 5: Braid diagrams corresponding to the trefoil and its mirror

In [2] some results are presented using the central extension

{0} → Z∗5
i−→ GL(2, 5)

p−→ PGL(2, 5)→ {1}

where GL(2, 5) is the group of invertible two by two matrices in the field Z5,
Z∗5 is the group of diagonal matrices which are multiples of the identity and
PGL(2, 5) is the quotient group GL(2, 5)/Z∗5.

These results state that for some x ∈ PGL(2, 5) the lifting distinguishes
the knots and the Eisermannn invariant doesn’t, but for other values of x both
invariants distinguish them. In short, the lifting is a stronger invariant, but for
this group and these knots the Eisermann invariant is already strong enough.
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However, considering the central extension

{0} → Z∗3
i−→ GL(2, 3)

p−→ PGL(2, 3)→ {1}

we get better results, as displayed in Table 1. In the first row are the values of
x ∈ PGL(2, 3) for which the Eisermann invariant doesn’t differentiate the trefoil
from its mirror image (rows 2 and 3) and the lifting does (rows 4 and 5). For
the other values of x, neither invariant distinguishes the knots. Using the same
notation as in [2], if A ∈ GL(2, 3), its projection to PGL(2, 3) is Ã.

x

(̃
1 1
1 0

) (̃
1 1
2 1

) (̃
0 1
1 2

) (̃
1 2
2 0

) (̃
1 2
1 1

) (̃
0 2
2 2

)
E+

(̃
1 0
0 1

)
+

(̃
2 1
1 1

) (̃
1 0
0 1

)
+

(̃
0 2
1 0

) (̃
1 0
0 1

)
+

(̃
2 1
1 1

) (̃
1 0
0 1

)
+

(̃
2 2
2 1

) (̃
1 0
0 1

)
+

(̃
0 2
1 0

) (̃
1 0
0 1

)
+

(̃
2 2
2 1

)
E−

(̃
1 0
0 1

)
+

(̃
2 1
1 1

) (̃
1 0
0 1

)
+

(̃
0 2
1 0

) (̃
1 0
0 1

)
+

(̃
2 1
1 1

) (̃
1 0
0 1

)
+

(̃
2 2
2 1

) (̃
1 0
0 1

)
+

(̃
0 2
1 0

) (̃
1 0
0 1

)
+

(̃
2 2
2 1

)
L+

(
1 0
0 1

)
+

(
2 1
1 1

) (
1 0
0 1

)
+

(
0 2
1 0

) (
1 0
0 1

)
+

(
1 2
2 2

) (
1 0
0 1

)
+

(
2 2
2 1

) (
1 0
0 1

)
+

(
0 1
2 0

) (
1 0
0 1

)
+

(
1 1
1 2

)
L−

(
1 0
0 1

)
+

(
1 2
2 2

) (
1 0
0 1

)
+

(
0 1
2 0

) (
1 0
0 1

)
+

(
2 1
1 1

) (
1 0
0 1

)
+

(
1 1
1 2

) (
1 0
0 1

)
+

(
0 2
1 0

) (
1 0
0 1

)
+

(
2 2
2 1

)

Table 1: Unlifted and lifted Eisermann invariant for the trefoil knot and its
mirror image

Therefore, we have an example of a knot K and a group G with which the
Eisermann invariant can’t distinguish K from K∗ for any x ∈ G, but for which
the lifting can, for some values of x.
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4.2 The Knot 51

Let K+ and K− be the 51 knot and its inverse, whose braid representation
is pictured in figure 6.

Fig. 6: Braid diagrams corresponding to the 51 knot and its inverse

We used the central extension {0} → Z∗5
i−→ GL(2, 5)

p−→ PGL(2, 5) → {1}.
As in the case of the trefoil knot, we display some typical results in Table 2.

x

(̃
2 1
2 2

) (̃
0 4
1 4

) (̃
0 4
3 4

) (̃
1 0
3 3

)
E+

(̃
1 0
0 1

)
+ 6

(̃
3 3
1 3

) (̃
1 0
0 1

)
+ 6

(̃
0 4
1 4

) (̃
1 0
0 1

)
+ 4

(̃
2 1
2 3

) (̃
1 0
0 1

)
+ 4

(̃
3 0
1 2

)
E−

(̃
1 0
0 1

)
+ 6

(̃
3 2
4 3

) (̃
1 0
0 1

)
+ 6

(̃
4 1
4 0

) (̃
1 0
0 1

)
+ 4

(̃
2 1
2 3

) (̃
1 0
0 1

)
+ 4

(̃
3 0
1 2

)
L+

(
1 0
0 1

)
+ 6

(
2 3
1 2

) (
1 0
0 1

)
+ 6

(
1 4
1 0

) (
1 0
0 1

)
+ 4

(
4 2
4 1

) (
1 0
0 1

)
+ 4

(
2 0
4 3

)
L−

(
1 0
0 1

)
+ 6

(
2 2
4 2

) (
1 0
0 1

)
+ 6

(
0 1
4 1

) (
1 0
0 1

)
+ 4

(
1 3
1 4

) (
1 0
0 1

)
+ 4

(
3 0
1 2

)

Table 2: Unlifted and lifted Eisermann invariant for the 51 knot and its mirror
image

Even though for some values of x ∈ PGL(2, 5) both the Eisermann invariant
and its lifting are able to distinguish these knots, as in the first and second
columns, for other values the Eisermann invariant can’t do so, but the lifting
can, as we can see in the last two columns. Hence, once again we can conclude
that the lifting is strictly stronger than the Eisermann invariant.
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4.3 The Knot 817

In [1], Eisermann states that with the Mathieu group M11, which has order
7920, the Eisermann invariant can distinguish this knot from its reverse. Our
goal was to find a smaller group such that the lifting of the Eisermann invariant
could distinguish them and the Eisermann invariant couldn’t.

Fig. 7: Braid diagrams corresponding to the 817 knot and its reverse

We did some calculations considering G as the projective special linear group
PSL(2, 3) and as the projective general linear group PGL(2, 3) but with no
success.

We then moved on to the central extension {0} → Z∗5
i−→ GL(2, 5)

p−→
PGL(2, 5)→ {1}. Note that PGL(2, 5) has 120 elements and so is much smaller
than the Mathieu group M11. We are still searching for results like the ones we
found for the previous knots, and in order to do so we restricted the choices of
x ∈ G to elements whose diagonal elements are equal since for these elements
we are sure that the Eisermann invariant can’t distinguish the knots [1].

Despite not being able to distinguish them, we did get some interesting re-
sults, which we display in table 3. For these values of x ∈ PGL(2, 5) the lifting
shows more structure than the Eisermann invariant.

x

(̃
1 2
2 1

) (̃
2 2
3 2

)
E+

(̃
1 0
0 1

)
+ 8

(̃
0 4
4 0

) (̃
1 0
0 1

)
+ 8

(̃
0 4
1 0

)
E−

(̃
1 0
0 1

)
+ 8

(̃
0 4
4 0

) (̃
1 0
0 1

)
+ 8

(̃
0 4
1 0

)
L+

(
1 0
0 1

)
+ 4

(
0 3
3 0

)
+ 4

(
0 2
2 0

) (
1 0
0 1

)
+ 4

(
0 4
1 0

)
+ 4

(
0 1
4 0

)
L−

(
1 0
0 1

)
+ 4

(
0 3
3 0

)
+ 4

(
0 2
2 0

) (
1 0
0 1

)
+ 4

(
0 4
1 0

)
+ 4

(
0 1
4 0

)

Table 3: Unlifted and lifted Eisermann invariant for the 817 knot and its reverse
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5 Conclusions

We have developed a programme for calculating the Eisermann invariant and
its lifting given a braid word for the knot, a finite group G, and an element x of G.
Our results include an example showing that, for G = PGL(2, 3), the Eisermann
invariant doesn’t distinguish the trefoil from its mirror image (obverse) for any
choice of x, whereas the lifted Eisermann invariant does distinguish them for
six choices of x, proving that the lifted invariant is strictly stronger. This is the
first example we have for which, given a group G, the lifting can distinguish two
knots even though the Eisermann invariant can’t.
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